BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28102402)

  • 1. Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus.
    Zhang J; Nou XA; Kim H; Scarcelli G
    Lab Chip; 2017 Feb; 17(4):663-670. PubMed ID: 28102402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Phase Imaging Flow Cytometry for Ultra-Large-Scale Single-Cell Biophysical Phenotyping.
    Lee KCM; Wang M; Cheah KSE; Chan GCF; So HKH; Wong KKY; Tsia KK
    Cytometry A; 2019 May; 95(5):510-520. PubMed ID: 31012276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
    Rosenbluth MJ; Lam WA; Fletcher DA
    Lab Chip; 2008 Jul; 8(7):1062-70. PubMed ID: 18584080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
    Lau AK; Wong TT; Shum HC; Wong KK; Tsia KK
    Methods Mol Biol; 2016; 1389():23-45. PubMed ID: 27460236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping.
    Liang M; Yang D; Zhou Y; Li P; Zhong J; Ai Y
    Anal Chem; 2021 Mar; 93(10):4567-4575. PubMed ID: 33661609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pinched-flow hydrodynamic stretching of single-cells.
    Dudani JS; Gossett DR; Tse HT; Di Carlo D
    Lab Chip; 2013 Sep; 13(18):3728-34. PubMed ID: 23884381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
    Xie L; Yang Y; Sun X; Qiao X; Liu Q; Song K; Kong B; Su X
    Cytometry A; 2015 Nov; 87(11):1029-37. PubMed ID: 26115102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic stretching of single cells for large population mechanical phenotyping.
    Gossett DR; Tse HT; Lee SA; Ying Y; Lindgren AG; Yang OO; Rao J; Clark AT; Di Carlo D
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7630-5. PubMed ID: 22547795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable in situ fluorescence cytometry of microscale cell-based assays.
    Tatosian DA; Shuler ML; Kim D
    Opt Lett; 2005 Jul; 30(13):1689-91. PubMed ID: 16075539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscope-based label-free microfluidic cytometry.
    Su X; Kirkwood SE; Gupta M; Marquez-Curtis L; Qiu Y; Janowska-Wieczorek A; Rozmus W; Tsui YY
    Opt Express; 2011 Jan; 19(1):387-98. PubMed ID: 21263578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells.
    Herbig M; Kräter M; Plak K; Müller P; Guck J; Otto O
    Methods Mol Biol; 2018; 1678():347-369. PubMed ID: 29071686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive Imaging: Brillouin Confocal Microscopy.
    Nikolić M; Conrad C; Zhang J; Scarcelli G
    Adv Exp Med Biol; 2018; 1092():351-364. PubMed ID: 30368760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiparameter mechanical and morphometric screening of cells.
    Masaeli M; Gupta D; O'Byrne S; Tse HT; Gossett DR; Tseng P; Utada AS; Jung HJ; Young S; Clark AT; Di Carlo D
    Sci Rep; 2016 Dec; 6():37863. PubMed ID: 27910869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying combined optical tweezers and fluorescence microscopy technologies to manipulate cell adhesions for cell-to-cell interaction study.
    Gou X; Han HC; Hu S; Leung AY; Sun D
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2308-15. PubMed ID: 23549881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time deformability cytometry as a label-free indicator of cell function.
    Otto O; Rosendahl P; Golfier S; Mietke A; Herbig M; Jacobi A; Topfner N; Herold C; Klaue D; Girardo S; Winzi M; Fischer-Friedrich E; Guck J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1861-4. PubMed ID: 26736644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array.
    Schonbrun E; Steinvurzel PE; Crozier KB
    Opt Express; 2011 Jan; 19(2):1385-94. PubMed ID: 21263680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy.
    Scarcelli G; Polacheck WJ; Nia HT; Patel K; Grodzinsky AJ; Kamm RD; Yun SH
    Nat Methods; 2015 Dec; 12(12):1132-4. PubMed ID: 26436482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing compressibility of the nuclear interior in wild-type and lamin deficient cells using microscopic imaging and computational modeling.
    González Avalos P; Reichenzeller M; Eils R; Gladilin E
    J Biomech; 2011 Oct; 44(15):2642-8. PubMed ID: 21906741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.