These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28102402)

  • 41. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer.
    Pierzchalski A; Hebeisen M; Mittag A; Bocsi J; Di Berardino M; Tarnok A
    Lab Chip; 2012 Nov; 12(21):4533-43. PubMed ID: 22907524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stimulation of isolated ventricular myocytes within an open architecture microarray.
    Klauke N; Smith GL; Cooper JM
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):531-8. PubMed ID: 15759583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measurement of single-cell adhesion strength using a microfluidic assay.
    Christ KV; Williamson KB; Masters KS; Turner KT
    Biomed Microdevices; 2010 Jun; 12(3):443-55. PubMed ID: 20213215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomechanics of subcellular structures by non-invasive Brillouin microscopy.
    Antonacci G; Braakman S
    Sci Rep; 2016 Nov; 6():37217. PubMed ID: 27845411
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous separate detection of low angle and large angle light scattering in an arc lamp-based flow cytometer.
    Steen HB
    Cytometry; 1986 Sep; 7(5):445-9. PubMed ID: 3757693
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multimode interference devices for focusing in microfluidic channels.
    Hunt HC; Wilkinson JS
    Opt Lett; 2011 Aug; 36(16):3067-9. PubMed ID: 21847162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry.
    Lau AK; Shum HC; Wong KK; Tsia KK
    Lab Chip; 2016 May; 16(10):1743-56. PubMed ID: 27099993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiparameter Mechanical Phenotyping for Accurate Cell Identification Using High-Throughput Microfluidic Deformability Cytometry.
    Zhou Z; Guo K; Zhu S; Ni C; Ni Z; Xiang N
    Anal Chem; 2024 Jun; 96(25):10313-10321. PubMed ID: 38857194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitivity improvement in fluorescence-based particle detection.
    Kettlitz SW; Moosmann C; Valouch S; Lemmer U
    Cytometry A; 2014 Sep; 85(9):746-55. PubMed ID: 24938222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry.
    Wang J; Zhan Y; Bao N; Lu C
    Lab Chip; 2012 Apr; 12(8):1441-5. PubMed ID: 22358224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deformability-based flow cytometry.
    Lincoln B; Erickson HM; Schinkinger S; Wottawah F; Mitchell D; Ulvick S; Bilby C; Guck J
    Cytometry A; 2004 Jun; 59(2):203-9. PubMed ID: 15170599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor.
    Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y
    Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative description of nuclear morphology in assessing resistance of sarcoma 180 to adriamycin.
    Komitowski D; Sonka J; Schmitt B; Muto S
    Cytometry; 1987 Nov; 8(6):625-31. PubMed ID: 3428044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Image-based cell-resolved screening assays in flow.
    Cheung MC; McKenna B; Wang SS; Wolf D; Ehrlich DJ
    Cytometry A; 2015 Jun; 87(6):541-8. PubMed ID: 25515084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A rapid method for quantifying cytoplasmic versus nuclear localization in endogenous peripheral blood leukocytes by conventional flow cytometry.
    Brittain GC; Gulnik S
    Cytometry A; 2017 Apr; 91(4):351-363. PubMed ID: 28371169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-cell screening of multiple biophysical properties in leukemia diagnosis from peripheral blood by pure light scattering.
    Dannhauser D; Rossi D; Ripaldi M; Netti PA; Causa F
    Sci Rep; 2017 Oct; 7(1):12666. PubMed ID: 28979002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated detection of morphological alterations during apoptosis.
    Lertworasirikul T; Bunyaratvej A; Kubota F
    Cell Biol Int; 2000; 24(12):905-7. PubMed ID: 11114240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.