These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 28102542)
41. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Werner T; Nehnevajova E; Köllmer I; Novák O; Strnad M; Krämer U; Schmülling T Plant Cell; 2010 Dec; 22(12):3905-20. PubMed ID: 21148816 [TBL] [Abstract][Full Text] [Related]
42. Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Vulavala VK; Elbaum R; Yermiyahu U; Fogelman E; Kumar A; Ginzberg I Planta; 2016 Jan; 243(1):217-29. PubMed ID: 26384982 [TBL] [Abstract][Full Text] [Related]
43. Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers light-dependent lesion formation and alters cytokinin homeostasis. Manzano D; Busquets A; Closa M; Hoyerová K; Schaller H; Kamínek M; Arró M; Ferrer A Plant Mol Biol; 2006 May; 61(1-2):195-213. PubMed ID: 16786301 [TBL] [Abstract][Full Text] [Related]
44. Mechanism of silica deposition in sorghum silica cells. Kumar S; Milstein Y; Brami Y; Elbaum M; Elbaum R New Phytol; 2017 Jan; 213(2):791-798. PubMed ID: 27621091 [TBL] [Abstract][Full Text] [Related]
45. Aromatic Cytokinin Arabinosides Promote PAMP-like Responses and Positively Regulate Leaf Longevity. Bryksová M; Dabravolski S; Kučerová Z; Zavadil Kokáš F; Špundová M; Plíhalová L; Takáč T; Grúz J; Hudeček M; Hloušková V; Koprna R; Novák O; Strnad M; Plíhal O; Doležal K ACS Chem Biol; 2020 Jul; 15(7):1949-1963. PubMed ID: 32520524 [TBL] [Abstract][Full Text] [Related]
46. Examining H Ahmed SS; Ullah I; Irfan S; Ahmed N Methods Mol Biol; 2017; 1569():159-163. PubMed ID: 28265996 [TBL] [Abstract][Full Text] [Related]
47. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum. Chen W; Zheng Y; Wang J; Wang Z; Yang Z; Chi X; Dai L; Lu G; Yang Y; Sun B New Phytol; 2023 May; 238(3):1129-1145. PubMed ID: 36683397 [TBL] [Abstract][Full Text] [Related]
48. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Yin L; Wang S; Liu P; Wang W; Cao D; Deng X; Zhang S Plant Physiol Biochem; 2014 Jul; 80():268-77. PubMed ID: 24813726 [TBL] [Abstract][Full Text] [Related]
50. Occurrence and biosynthesis of cytokinins in poplar. Jaworek P; Kopečný D; Zalabák D; Šebela M; Kouřil Š; Hluska T; Končitíková R; Podlešáková K; Tarkowski P Planta; 2019 Jul; 250(1):229-244. PubMed ID: 30980246 [TBL] [Abstract][Full Text] [Related]
51. Inhibition of leaf senescence by autoregulated production of cytokinin. Gan S; Amasino RM Science; 1995 Dec; 270(5244):1986-8. PubMed ID: 8592746 [TBL] [Abstract][Full Text] [Related]
52. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Balibrea Lara ME; Gonzalez Garcia MC; Fatima T; Ehness R; Lee TK; Proels R; Tanner W; Roitsch T Plant Cell; 2004 May; 16(5):1276-87. PubMed ID: 15100396 [TBL] [Abstract][Full Text] [Related]
53. Identification of O-acetylserine(thiol)lyase (OASTL) genes in sorghum (Sorghum bicolor) and gene expression analysis under cadmium stress. Akbudak MA; Filiz E; Uylas S Mol Biol Rep; 2019 Feb; 46(1):343-354. PubMed ID: 30443823 [TBL] [Abstract][Full Text] [Related]
54. Sweet sorghum (Sorghum bicolor L.) SbSTOP1 activates the transcription of a β-1,3-glucanase gene to reduce callose deposition under Al toxicity: A novel pathway for Al tolerance in plants. Gao J; Yan S; Yu H; Zhan M; Guan K; Wang Y; Yang Z Biosci Biotechnol Biochem; 2019 Mar; 83(3):446-455. PubMed ID: 30387379 [TBL] [Abstract][Full Text] [Related]
55. Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development. Soukup M; Martinka M; Bosnic D; Caplovicová M; Elbaum R; Lux A Ann Bot; 2017 Nov; 120(5):739-753. PubMed ID: 28651339 [TBL] [Abstract][Full Text] [Related]
56. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Franks TK; Powell KS; Choimes S; Marsh E; Iocco P; Sinclair BJ; Ford CM; van Heeswijck R Transgenic Res; 2006 Apr; 15(2):181-95. PubMed ID: 16604459 [TBL] [Abstract][Full Text] [Related]
58. New Urea Derivatives Are Effective Anti-senescence Compounds Acting Most Likely via a Cytokinin-Independent Mechanism. Nisler J; Zatloukal M; Sobotka R; Pilný J; Zdvihalová B; Novák O; Strnad M; Spíchal L Front Plant Sci; 2018; 9():1225. PubMed ID: 30271413 [TBL] [Abstract][Full Text] [Related]
59. Cytokinin inhibition of leaf senescence. Zwack PJ; Rashotte AM Plant Signal Behav; 2013 Jul; 8(7):e24737. PubMed ID: 23656876 [TBL] [Abstract][Full Text] [Related]
60. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Wu XY; Hu WJ; Luo H; Xia Y; Zhao Y; Wang LD; Zhang LM; Luo JC; Jing HC Plant Mol Biol; 2016 Nov; 92(4-5):555-580. PubMed ID: 27586543 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]