These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28102576)

  • 1. Printable Functional Chips Based on Nanoparticle Assembly.
    Huang Y; Li W; Qin M; Zhou H; Zhang X; Li F; Song Y
    Small; 2017 Jan; 13(4):. PubMed ID: 28102576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning.
    Zhao W; Yan Y; Chen X; Wang T
    Innovation (Camb); 2022 Jul; 3(4):100253. PubMed ID: 35602121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation.
    Kang H; Lee GH; Jung H; Lee JW; Nam Y
    ACS Nano; 2018 Feb; 12(2):1128-1138. PubMed ID: 29402086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet printed (bio)chemical sensing devices.
    Komuro N; Takaki S; Suzuki K; Citterio D
    Anal Bioanal Chem; 2013 Jul; 405(17):5785-805. PubMed ID: 23677254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces.
    Orsi G; De Maria C; Montemurro F; Chauhan VM; Aylott JW; Vozzi G
    Curr Top Med Chem; 2015; 15(3):271-8. PubMed ID: 25547966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional nanostructures for enzyme based biosensors: properties, fabrication and applications.
    Othman A; Karimi A; Andreescu S
    J Mater Chem B; 2016 Dec; 4(45):7178-7203. PubMed ID: 32263721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis.
    Esfandyarpour R; DiDonato MJ; Yang Y; Durmus NG; Harris JS; Davis RW
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1306-E1315. PubMed ID: 28167769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general strategy for printing colloidal nanomaterials into one-dimensional micro/nanolines.
    Li Y; Zhang Z; Su M; Huang Z; Li Z; Li F; Pan Q; Ren W; Hu X; Li L; Song Y
    Nanoscale; 2018 Dec; 10(47):22374-22380. PubMed ID: 30474673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonpolar Solvent Modulated Inkjet Printing of Nanoparticle Self-Assembly Morphologies.
    Guo D; Xu Y; Ruan J; Tong J; Li Y; Zhai T; Song Y
    Small; 2023 Jul; 19(28):e2208161. PubMed ID: 37191293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal pen lithography.
    Xue M; Cai X; Chen G
    Small; 2015 Feb; 11(5):548-52. PubMed ID: 25288364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and ink-jet printing of highly luminescing silicon nanoparticles for printable electronics.
    Gupta A; Khalil AS; Offer M; Geller M; Winterer M; Lorke A; Wiggers H
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5028-33. PubMed ID: 21770139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printable devices for neurotechnology.
    Matta R; Moreau D; O'Connor R
    Front Neurosci; 2024; 18():1332827. PubMed ID: 38440397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable printing droplets for high-resolution patterns.
    Kuang M; Wang L; Song Y
    Adv Mater; 2014 Oct; 26(40):6950-8. PubMed ID: 24687946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Printable Flexible Optical Devices: From Printing Technology and Optimization Strategies to Perspectives.
    Luo C; Liu L; Huang Y; Lou X; Xia F; Song Y
    J Phys Chem Lett; 2022 Dec; 13(51):12061-12075. PubMed ID: 36542750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser printing-enabled direct creation of cellular heterogeneity in lab-on-a-chip devices.
    Xiong R; Chai W; Huang Y
    Lab Chip; 2019 Apr; 19(9):1644-1656. PubMed ID: 30924821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust and versatile ionic liquid microarrays achieved by microcontact printing.
    Gunawan CA; Ge M; Zhao C
    Nat Commun; 2014 Apr; 5():3744. PubMed ID: 24781644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion of Vertically Aligned Nanowires into Living Cells by Inkjet Printing of Cells.
    Lee D; Lee D; Won Y; Hong H; Kim Y; Song H; Pyun JC; Cho YS; Ryu W; Moon J
    Small; 2016 Mar; 12(11):1446-57. PubMed ID: 26800021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.
    Adler-Abramovich L; Gazit E
    J Pept Sci; 2008 Feb; 14(2):217-23. PubMed ID: 18035858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.