These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28102576)

  • 21. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.
    Adler-Abramovich L; Gazit E
    J Pept Sci; 2008 Feb; 14(2):217-23. PubMed ID: 18035858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transfer printing techniques for materials assembly and micro/nanodevice fabrication.
    Carlson A; Bowen AM; Huang Y; Nuzzo RG; Rogers JA
    Adv Mater; 2012 Oct; 24(39):5284-318. PubMed ID: 22936418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing.
    Safaryan S; Slabov V; Kopyl S; Romanyuk K; Bdikin I; Vasilev S; Zelenovskiy P; Shur VY; Uslamin EA; Pidko EA; Vinogradov AV; Kholkin AL
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10543-10551. PubMed ID: 29498259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH-modulated self-assembly of colloidal nanoparticles in a dual-droplet inkjet printing process.
    Al-Milaji KN; Radhakrishnan V; Kamerkar P; Zhao H
    J Colloid Interface Sci; 2018 Nov; 529():234-242. PubMed ID: 29894941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Performance Materials for 3D Printing in Chemical Synthesis Applications.
    Kotz F; Risch P; Helmer D; Rapp BE
    Adv Mater; 2019 Jun; 31(26):e1805982. PubMed ID: 30773705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterning of controllable surface wettability for printing techniques.
    Tian D; Song Y; Jiang L
    Chem Soc Rev; 2013 Jun; 42(12):5184-209. PubMed ID: 23511610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing.
    Abulikemu M; Da'as EH; Haverinen H; Cha D; Malik MA; Jabbour GE
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):420-3. PubMed ID: 24352872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes.
    Dkhar DS; Kumari R; Malode SJ; Shetti NP; Chandra P
    J Pharm Biomed Anal; 2023 Jan; 223():115120. PubMed ID: 36343538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Printable Smart Materials and Devices: Strategies and Applications.
    Su M; Song Y
    Chem Rev; 2022 Mar; 122(5):5144-5164. PubMed ID: 34415152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.
    Secor EB; Hersam MC
    J Phys Chem Lett; 2015 Feb; 6(4):620-6. PubMed ID: 26262476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticle printing with single-particle resolution.
    Kraus T; Malaquin L; Schmid H; Riess W; Spencer ND; Wolf H
    Nat Nanotechnol; 2007 Sep; 2(9):570-6. PubMed ID: 18654370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display.
    Yoon B; Ham DY; Yarimaga O; An H; Lee CW; Kim JM
    Adv Mater; 2011 Dec; 23(46):5492-7. PubMed ID: 22052793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular transfer printing using block copolymers.
    Ji S; Liu CC; Liu G; Nealey PF
    ACS Nano; 2010 Feb; 4(2):599-609. PubMed ID: 20041629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanostructures and functional materials fabricated by interferometric lithography.
    Xia D; Ku Z; Lee SC; Brueck SR
    Adv Mater; 2011 Jan; 23(2):147-79. PubMed ID: 20976672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications.
    Su W; Cook BS; Fang Y; Tentzeris MM
    Sci Rep; 2016 Oct; 6():35111. PubMed ID: 27713545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms.
    Arrabito G; Gulli D; Alfano C; Pignataro B
    Analyst; 2022 Mar; 147(7):1294-1312. PubMed ID: 35275148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Point-of-care testing: applications of 3D printing.
    Chan HN; Tan MJA; Wu H
    Lab Chip; 2017 Aug; 17(16):2713-2739. PubMed ID: 28702608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates.
    Chen S; Su M; Zhang C; Gao M; Bao B; Yang Q; Su B; Song Y
    Adv Mater; 2015 Jul; 27(26):3928-33. PubMed ID: 26011403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic Field-Induced Nanoparticle Assembly in Three-Dimensional (3D) Printing Polymeric Composites.
    Ravichandran D; Xu W; Jambhulkar S; Zhu Y; Kakarla M; Bawareth M; Song K
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52274-52294. PubMed ID: 34709033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.