These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 28103021)
41. Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition. Yan L; Zhang X; Ren T; Zhang H; Wang X; Suo J Chem Commun (Camb); 2002 Apr; (8):860-1. PubMed ID: 12123015 [TBL] [Abstract][Full Text] [Related]
42. In Situ Reconstruction of Active Heterointerface for Hydrocarbon Combustion through Thermal Aging over Strontium-Modified Co Yang L; Zhang C; Xiao J; Tu P; Wang Y; Wang Y; Tang S; Tang W Inorg Chem; 2024 Apr; 63(15):6854-6870. PubMed ID: 38564370 [TBL] [Abstract][Full Text] [Related]
43. Graphitized Carbon-Supported Co@Co Ma J; Guo W; Ni C; Chen X; Li W; Zheng J; Chen W; Luo Z; Wang J; Guo Y Environ Sci Technol; 2024 Jul; 58(27):12189-12200. PubMed ID: 38838084 [TBL] [Abstract][Full Text] [Related]
44. Ce(0.6)Zr(0.3)Y(0.1)O(2) nanorod supported gold and palladium alloy nanoparticles: high-performance catalysts for toluene oxidation. Tan W; Deng J; Xie S; Yang H; Jiang Y; Guo G; Dai H Nanoscale; 2015 May; 7(18):8510-23. PubMed ID: 25895427 [TBL] [Abstract][Full Text] [Related]
45. Response-metrics for acute lung inflammation pattern by cobalt-based nanoparticles. Jeong J; Han Y; Poland CA; Cho WS Part Fibre Toxicol; 2015 May; 12():13. PubMed ID: 25967046 [TBL] [Abstract][Full Text] [Related]
46. Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. Jagadeesh RV; Stemmler T; Surkus AE; Bauer M; Pohl MM; Radnik J; Junge K; Junge H; Brückner A; Beller M Nat Protoc; 2015 Jun; 10(6):916-26. PubMed ID: 25996791 [TBL] [Abstract][Full Text] [Related]
47. Promoting catalytic ozonation of phenol over graphene through nitrogenation and Co Bao Q; Hui KS; Duh JG J Environ Sci (China); 2016 Dec; 50():38-48. PubMed ID: 28034429 [TBL] [Abstract][Full Text] [Related]
48. Au-Rh and Au-Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability. Konuspayeva Z; Afanasiev P; Nguyen TS; Di Felice L; Morfin F; Nguyen NT; Nelayah J; Ricolleau C; Li ZY; Yuan J; Berhault G; Piccolo L Phys Chem Chem Phys; 2015 Nov; 17(42):28112-20. PubMed ID: 25765742 [TBL] [Abstract][Full Text] [Related]
49. The crystal plane effect on the peroxidase-like catalytic properties of Co₃O₄ nanomaterials. Mu J; Zhang L; Zhao G; Wang Y Phys Chem Chem Phys; 2014 Aug; 16(29):15709-16. PubMed ID: 24960303 [TBL] [Abstract][Full Text] [Related]
50. Vapor phase synthesis, characterization and gas sensing performances of Co3O4 and Au/Co3O4 nanosystems. Barreca D; Comini E; Gasparotto A; Maccato C; Pozza A; Sada C; Sberveglieri G; Tondello E J Nanosci Nanotechnol; 2010 Dec; 10(12):8054-61. PubMed ID: 21121296 [TBL] [Abstract][Full Text] [Related]
51. High-temperature hydrodechlorination of ozone-depleting chlorodifluoromethane (HCFC-22) on supported Pd and Ni catalysts. Ha JM; Kim D; Kim J; Ahn BS; Kim Y; Kang JW J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(9):989-96. PubMed ID: 21847789 [TBL] [Abstract][Full Text] [Related]
52. A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co Zhou S; Qi H Nanoscale; 2020 Aug; 12(33):17373-17384. PubMed ID: 32789386 [TBL] [Abstract][Full Text] [Related]
53. Recent Advances in Co Wei X; Kang J; Gan L; Wang W; Yang L; Wang D; Zhong R; Qi J Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446434 [TBL] [Abstract][Full Text] [Related]
54. Methane catalytic combustion on Pd9/gamma-Al2O3 with different degrees of Pd oxidation. Czekaj I; Kacprzak KA; Mantzaras J Chimia (Aarau); 2013; 67(4):271-4. PubMed ID: 23967704 [TBL] [Abstract][Full Text] [Related]
55. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Bukhtiyarov AV; Prosvirin IP; Saraev AA; Klyushin AY; Knop-Gericke A; Bukhtiyarov VI Faraday Discuss; 2018 Sep; 208(0):255-268. PubMed ID: 29877526 [TBL] [Abstract][Full Text] [Related]
56. Investigation of Methane Oxidation Reactions Over a Dual-Bed Catalyst System using Richard M; Duprez D; Bion N; Can F ChemSusChem; 2017 Jan; 10(1):210-219. PubMed ID: 27860373 [TBL] [Abstract][Full Text] [Related]
57. Influence of NO Cui C; Zhang Y; Shan W; Yu Y; He H J Environ Sci (China); 2022 Feb; 112():38-47. PubMed ID: 34955221 [TBL] [Abstract][Full Text] [Related]
58. One pot microwave synthesis of highly stable AuPd@Pd supported core-shell nanoparticles. Howe AGR; Miedziak PJ; Morgan DJ; He Q; Strasser P; Edwards JK Faraday Discuss; 2018 Sep; 208(0):409-425. PubMed ID: 29796569 [TBL] [Abstract][Full Text] [Related]
59. Enhancing low-temperature CO removal in complex flue gases: A study on La and Cu doped Co Liu W; Zhou Y; Wang J; Hu Y; Hu W J Hazard Mater; 2024 May; 470():134174. PubMed ID: 38574661 [TBL] [Abstract][Full Text] [Related]
60. Cobalt-embedded carbon nanofiber derived from a coordination polymer as a highly efficient heterogeneous catalyst for activating oxone in water. Lin KA; Tong WC; Du Y Chemosphere; 2018 Mar; 195():272-281. PubMed ID: 29272796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]