These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 28103078)
1. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. Płociniczak T; Fic E; Pacwa-Płociniczak M; Pawlik M; Piotrowska-Seget Z Int J Phytoremediation; 2017 Jul; 19(7):614-620. PubMed ID: 28103078 [TBL] [Abstract][Full Text] [Related]
2. The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Pacwa-Płociniczak M; Czapla J; Płociniczak T; Piotrowska-Seget Z Ecotoxicol Environ Saf; 2019 Mar; 169():615-622. PubMed ID: 30496993 [TBL] [Abstract][Full Text] [Related]
3. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994 [TBL] [Abstract][Full Text] [Related]
4. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Pacwa-Płociniczak M; Płociniczak T; Iwan J; Żarska M; Chorążewski M; Dzida M; Piotrowska-Seget Z J Environ Manage; 2016 Mar; 168():175-84. PubMed ID: 26708648 [TBL] [Abstract][Full Text] [Related]
5. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Escalante-Espinosa E; Gallegos-Martínez ME; Favela-Torres E; Gutiérrez-Rojas M Chemosphere; 2005 Apr; 59(3):405-13. PubMed ID: 15763093 [TBL] [Abstract][Full Text] [Related]
6. Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil. Li J; Ma N; Hao B; Qin F; Zhang X Int J Phytoremediation; 2023; 25(6):706-716. PubMed ID: 35900160 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the Suitability of Steliga T; Kluk D Toxics; 2021 Jun; 9(7):. PubMed ID: 34202316 [TBL] [Abstract][Full Text] [Related]
8. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Han T; Zhao Z; Bartlam M; Wang Y Environ Sci Pollut Res Int; 2016 Nov; 23(21):21219-21228. PubMed ID: 27491422 [TBL] [Abstract][Full Text] [Related]
9. Intensification of Bodor A; Petrovszki P; Erdeiné Kis Á; Vincze GE; Laczi K; Bounedjoum N; Szilágyi Á; Szalontai B; Feigl G; Kovács KL; Rákhely G; Perei K Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32526873 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Jones RK; Sun WH; Tang CS; Robert FM Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638 [TBL] [Abstract][Full Text] [Related]
11. Development of plant-microbe phytoremediation system for petroleum hydrocarbon degradation: An insight from alkb gene expression and phytotoxicity analysis. Iqbal A; Mukherjee M; Rashid J; Khan SA; Ali MA; Arshad M Sci Total Environ; 2019 Jun; 671():696-704. PubMed ID: 30939322 [TBL] [Abstract][Full Text] [Related]
12. Degradation of petroleum hydrocarbon contaminants by Rhodococcus erythropolis KB1 synergistic with alfalfa (Medicago sativa L.). Nan Y; Zhu N; Sun S; Lei T; Guo X; Leng F; Yang M; Chen J; Wang Y Environ Sci Pollut Res Int; 2024 May; 31(24):35332-35352. PubMed ID: 38727971 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Alarcón A; Davies FT; Autenrieth RL; Zuberer DA Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211 [TBL] [Abstract][Full Text] [Related]
15. Assessment of Biodegradation Efficiency of Polychlorinated Biphenyls (PCBs) and Petroleum Hydrocarbons (TPH) in Soil Using Three Individual Bacterial Strains and Their Mixed Culture. Steliga T; Wojtowicz K; Kapusta P; Brzeszcz J Molecules; 2020 Feb; 25(3):. PubMed ID: 32041368 [TBL] [Abstract][Full Text] [Related]
16. Growth of zinnia, Italian ryegrass, and alfalfa and their remediation effects in diesel oil-contaminated soils. Ikeura H; Ozawa S; Tamaki M Int J Phytoremediation; 2019; 21(10):1005-1011. PubMed ID: 31020861 [TBL] [Abstract][Full Text] [Related]
17. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands. Palma-Cruz Fde J; Pérez-Vargas J; Rivera Casado NA; Gómez Guzmán O; Calva-Calva G Environ Sci Pollut Res Int; 2016 Aug; 23(16):16359-71. PubMed ID: 27164872 [TBL] [Abstract][Full Text] [Related]
19. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Afzal M; Yousaf S; Reichenauer TG; Sessitsch A Int J Phytoremediation; 2012 Jan; 14(1):35-47. PubMed ID: 22567693 [TBL] [Abstract][Full Text] [Related]
20. Profiling of plants at petroleum contaminated site for phytoremediation. Anyasi RO; Atagana HI Int J Phytoremediation; 2018 Mar; 20(4):352-361. PubMed ID: 29584469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]