These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28103196)

  • 21. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait Stride Length Estimation Using Embedded Machine Learning.
    Verbiest JR; Bonnechère B; Saeys W; Van de Walle P; Truijen S; Meyns P
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders.
    Tunca C; Pehlivan N; Ak N; Arnrich B; Salur G; Ersoy C
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28398224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Validation of a Biofeedback Device to Improve Heel-to-Toe Gait in Seniors.
    Vadnerkar A; Figueiredo S; Mayo NE; Kearney RE
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):140-146. PubMed ID: 28186914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea.
    González I; Fontecha J; Hervás R; Bravo J
    J Med Syst; 2016 Dec; 40(12):251. PubMed ID: 27714561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methodology and validation for identifying gait type using machine learning on IMU data.
    Mahoney JM; Rhudy MB
    J Med Eng Technol; 2019 Jan; 43(1):25-32. PubMed ID: 31037995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Deep Learning Approach for Foot Trajectory Estimation in Gait Analysis Using Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
    Dehzangi O; Taherisadr M; ChangalVala R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embedded sensor insole for wireless measurement of gait parameters.
    Martínez-Martí F; Martínez-García MS; García-Díaz SG; García-Jiménez J; Palma AJ; Carvajal MA
    Australas Phys Eng Sci Med; 2014 Mar; 37(1):25-35. PubMed ID: 24375153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ambulatory Estimation of Relative Foot Positions by Fusing Ultrasound and Inertial Sensor Data.
    Weenk D; Roetenberg D; van Beijnum BJ; Hermens HJ; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):817-26. PubMed ID: 25248191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor.
    Sagawa K; Ohkubo K
    J Biomech; 2015 Jul; 48(10):2054-9. PubMed ID: 25907547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal parameters and patterns of the foot roll over during walking: normative data for healthy adults.
    Blanc Y; Balmer C; Landis T; Vingerhoets F
    Gait Posture; 1999 Oct; 10(2):97-108. PubMed ID: 10502643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A machine learning approach to estimate Minimum Toe Clearance using Inertial Measurement Units.
    Santhiranayagam BK; Lai DT; Sparrow WA; Begg RK
    J Biomech; 2015 Dec; 48(16):4309-16. PubMed ID: 26573902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument.
    Hsu YL; Chung PC; Wang WH; Pai MC; Wang CY; Lin CW; Wu HL; Wang JS
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1822-30. PubMed ID: 25375679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.
    Hao M; Chen K; Fu C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3534-3542. PubMed ID: 30932822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Convolutional Neural Network for Estimating Spatiotemporal and Kinematic Gait Parameters using a Single Inertial Sensor
    Ng G; Gouda A; Andrysek J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of Stride Time Variability in Unobtrusive Long-Term Monitoring Using Inertial Measurement Sensors.
    Lueken M; Kate WT; Valenti G; Batista JP; Bollheimer C; Leonhardt S; Ngo C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1879-1886. PubMed ID: 32386168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.
    Ravi D; Wong C; Lo B; Yang GZ
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):56-64. PubMed ID: 28026792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic Gaits: Gait Analysis With Footstep Sounds.
    Altaf MU; Butko T; Juang BH
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2001-11. PubMed ID: 25769144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of Parkinson's Disease Gait Using Spatial-Temporal Gait Features.
    Wahid F; Begg RK; Hass CJ; Halgamuge S; Ackland DC
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1794-802. PubMed ID: 26551989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.