BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28103270)

  • 1. Cold Atmospheric Plasma, Created at the Tip of an Elongated Flexible Capillary Using Low Electric Current, Can Slow the Progression of Melanoma.
    Binenbaum Y; Ben-David G; Gil Z; Slutsker YZ; Ryzhkov MA; Felsteiner J; Krasik YE; Cohen JT
    PLoS One; 2017; 12(1):e0169457. PubMed ID: 28103270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between cold plasma, electrochemotherapy and combined therapy in a melanoma mouse model.
    Daeschlein G; Scholz S; Lutze S; Arnold A; von Podewils S; Kiefer T; Tueting T; Hardt O; Haase H; Grisk O; Langner S; Ritter C; von Woedtke T; Jünger M
    Exp Dermatol; 2013 Sep; 22(9):582-6. PubMed ID: 23947672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric Plasma Meets Cell: Plasma Tailoring by Living Cells.
    Lin L; Yan D; Gjika E; Sherman JH; Keidar M
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30621-30630. PubMed ID: 31374163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells.
    Arndt S; Wacker E; Li YF; Shimizu T; Thomas HM; Morfill GE; Karrer S; Zimmermann JL; Bosserhoff AK
    Exp Dermatol; 2013 Apr; 22(4):284-9. PubMed ID: 23528215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameters Affecting the Antimicrobial Properties of Cold Atmospheric Plasma Jet.
    Lou BS; Lai CH; Chu TP; Hsieh JH; Chen CM; Su YM; Hou CW; Chou PY; Lee JW
    J Clin Med; 2019 Nov; 8(11):. PubMed ID: 31717600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy.
    Keidar M; Walk R; Shashurin A; Srinivasan P; Sandler A; Dasgupta S; Ravi R; Guerrero-Preston R; Trink B
    Br J Cancer; 2011 Oct; 105(9):1295-301. PubMed ID: 21979421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Melanoma Capability of Contactless Cold Atmospheric Plasma Treatment.
    Yan D; Wang Q; Yao X; Malyavko A; Keidar M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helium/Argon-Generated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing.
    Lou BS; Hsieh JH; Chen CM; Hou CW; Wu HY; Chou PY; Lai CH; Lee JW
    Front Bioeng Biotechnol; 2020; 8():683. PubMed ID: 32695763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous removal of norfloxacin and chloramphenicol using cold atmospheric plasma jet (CAPJ): Enhanced performance, synergistic effect, plasma-activated water (PAW) contribution, mechanism and toxicity evaluation.
    Fang C; Xu H; Wang S; Shao C; Liu C; Wang H; Huang Q
    J Hazard Mater; 2023 Jun; 452():131306. PubMed ID: 37004443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of cold atmospheric plasma jets on B16 and COLO320 tumoral cells.
    Lupu AR; Georgescu N; Călugăru A; Cremer L; Szegli G; Kerek F
    Roum Arch Microbiol Immunol; 2009; 68(3):136-44. PubMed ID: 20361533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 15-μm-sized single-cellular-level and cell-manipulatable microplasma jet in cancer therapies.
    Kim JY; Wei Y; Li J; Kim SO
    Biosens Bioelectron; 2010 Oct; 26(2):555-9. PubMed ID: 20685106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmas for Treating Cancer: Opportunities for Adaptive and Self-Adaptive Approaches.
    Keidar M; Yan D; Beilis II; Trink B; Sherman JH
    Trends Biotechnol; 2018 Jun; 36(6):586-593. PubMed ID: 28755977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the design and characterization of a new cold atmospheric pressure plasma jet and its applications on cancer cells treatment.
    Akhlaghi M; Rajayi H; Mashayekh AS; Khani M; Hassan ZM; Shokri B
    Biointerphases; 2015 Jun; 10(2):029510. PubMed ID: 25908593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk assessment of a cold atmospheric physical argon plasma jet on the skin, liver, and biochemical factors in an animal model.
    Najafzadehvarzi H; Ghasemi M; Sohbatzadeh F; Aminjarrahi M; Darzi RE
    Med Eng Phys; 2022 Aug; 106():103826. PubMed ID: 35926949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-thermal plasma multi-jet platform based on a flexible matrix.
    Corbella C; Portal S; Lin L; Keidar M
    Rev Sci Instrum; 2021 Aug; 92(8):083505. PubMed ID: 34470378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an atmospheric pressure plasma jet and its applications for disinfection and cancer treatment.
    Thiyagarajan M; Sarani A; Gonzales XF
    Stud Health Technol Inform; 2013; 184():443-9. PubMed ID: 23400199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of long- and short-pulsed electric fields for treating melanoma in an in vivo mouse model.
    Chen X; Chen X; Schoenbach KH; Zheng S; Swanson RJ
    In Vivo; 2011; 25(1):23-7. PubMed ID: 21282730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Direct and Indirect cold atmospheric-pressure plasma methods in the B
    Saadati F; Mahdikia H; Abbaszadeh HA; Abdollahifar MA; Khoramgah MS; Shokri B
    Sci Rep; 2018 May; 8(1):7689. PubMed ID: 29769707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma.
    Kim JY; Ballato J; Foy P; Hawkins T; Wei Y; Li J; Kim SO
    Biosens Bioelectron; 2011 Oct; 28(1):333-8. PubMed ID: 21820891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma.
    Logani MK; Bhanushali A; Anga A; Majmundar A; Szabo I; Ziskin MC
    Bioelectromagnetics; 2004 Oct; 25(7):516-23. PubMed ID: 15376243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.