These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 28103428)

  • 1. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO
    Scott M; Blas Molinos B; Westhues C; Franciò G; Leitner W
    ChemSusChem; 2017 Mar; 10(6):1085-1093. PubMed ID: 28103428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate.
    Park K; Gunasekar GH; Prakash N; Jung KD; Yoon S
    ChemSusChem; 2015 Oct; 8(20):3410-3. PubMed ID: 26493515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base.
    Wesselbaum S; Hintermair U; Leitner W
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8585-8. PubMed ID: 22807319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst.
    Preti D; Resta C; Squarcialupi S; Fachinetti G
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12551-4. PubMed ID: 22057843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates.
    Zhu F; Zhu-Ge L; Yang G; Zhou S
    ChemSusChem; 2015 Feb; 8(4):609-12. PubMed ID: 25603778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid.
    Zhang Z; Hu S; Song J; Li W; Yang G; Han B
    ChemSusChem; 2009; 2(3):234-8. PubMed ID: 19266516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.
    Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA
    ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Combined Carbon Capture and Recycling: Addition of an Amine Alters Product Selectivity from CO to Formic Acid in Manganese Catalyzed Reduction of CO
    Bhattacharya M; Sebghati S; VanderLinden RT; Saouma CT
    J Am Chem Soc; 2020 Oct; 142(41):17589-17597. PubMed ID: 32955864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Methanol Production by CO
    Onishi N; Himeda Y
    Acc Chem Res; 2024 Oct; 57(19):2816-2825. PubMed ID: 39284577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.
    Schuchmann K; Müller V
    Science; 2013 Dec; 342(6164):1382-5. PubMed ID: 24337298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Hydrogenation of CO
    Louis Anandaraj SJ; Kang L; DeBeer S; Bordet A; Leitner W
    Small; 2023 May; 19(18):e2206806. PubMed ID: 36709493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage.
    Himeda Y; Miyazawa S; Hirose T
    ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO.
    Balaraman E; Gunanathan C; Zhang J; Shimon LJ; Milstein D
    Nat Chem; 2011 Jul; 3(8):609-14. PubMed ID: 21778980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Carbon-Neutral CO
    Kar S; Goeppert A; Galvan V; Chowdhury R; Olah J; Prakash GKS
    J Am Chem Soc; 2018 Dec; 140(49):16873-16876. PubMed ID: 30339394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated CO
    Kar S; Goeppert A; Prakash GKS
    Acc Chem Res; 2019 Oct; 52(10):2892-2903. PubMed ID: 31487145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes.
    Tamaki Y; Morimoto T; Koike K; Ishitani O
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15673-8. PubMed ID: 22908243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.