These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28103469)

  • 1. Transitions of postural coordination as a function of frequency of the moving support platform.
    Dutt-Mazumder A; Newell K
    Hum Mov Sci; 2017 Apr; 52():24-35. PubMed ID: 28103469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition of COM-COP relative phase in a dynamic balance task.
    Ko JH; Challis JH; Newell KM
    Hum Mov Sci; 2014 Dec; 38():1-14. PubMed ID: 25240175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintenance of postural stability as a function of tilted base of support.
    Dutt-Mazumder A; Challis J; Newell K
    Hum Mov Sci; 2016 Aug; 48():91-101. PubMed ID: 27155961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of postural patterns as a function of vision and translation frequency.
    Buchanan JJ; Horak FB
    J Neurophysiol; 1999 May; 81(5):2325-39. PubMed ID: 10322069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
    Kilby MC; Molenaar PC; Slobounov SM; Newell KM
    Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary.
    Kilby MC; Slobounov SM; Newell KM
    Gait Posture; 2016 Jun; 47():18-23. PubMed ID: 27264397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voluntary control of postural equilibrium patterns.
    Buchanan JJ; Horak FB
    Behav Brain Res; 2003 Aug; 143(2):121-40. PubMed ID: 12900039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transitions in a postural task: do the recruitment and suppression of degrees of freedom stabilize posture?
    Buchanan JJ; Horak FB
    Exp Brain Res; 2001 Aug; 139(4):482-94. PubMed ID: 11534873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postural control in quiet standing with a concurrent cognitive task in psychotic conditions.
    Stensdotter AK; Wanvik AK; Lorås HW
    J Mot Behav; 2013; 45(4):279-87. PubMed ID: 23742044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling oscillatory platform frequency reveals recurrence of intermittent postural attractor states.
    Dutt-Mazumder A; Rand TJ; Mukherjee M; Newell KM
    Sci Rep; 2018 Aug; 8(1):11580. PubMed ID: 30068921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector coding reveals the underlying balance control strategies used by humans during translational perturbation.
    Taleshi N; Brownjohn JMW; Lamb SE; Zivanovic S; Williams GKR
    Sci Rep; 2022 Dec; 12(1):21030. PubMed ID: 36470936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task experience influences coordinative structures and performance variables in learning a slalom ski-simulator task.
    Dutt-Mazumder A; Newell KM
    Scand J Med Sci Sports; 2018 May; 28(5):1604-1614. PubMed ID: 29377312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of compensatory postural coordination patterns.
    Ko YG; Challis JH; Stitt JP; Newell KM
    J Mot Behav; 2003 Dec; 35(4):325-42. PubMed ID: 14607771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural Control Underlying Head Movements While Tracking Visual Targets.
    Deprá PP; Amado A; van Emmerik REA
    Motor Control; 2019 Jul; 23(3):365-383. PubMed ID: 30678529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional synergies underlying control of upright posture during changes in head orientation.
    Park E; Schöner G; Scholz JP
    PLoS One; 2012; 7(8):e41583. PubMed ID: 22870233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning effects on muscle modes and multi-mode postural synergies.
    Asaka T; Wang Y; Fukushima J; Latash ML
    Exp Brain Res; 2008 Jan; 184(3):323-38. PubMed ID: 17724582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory mechanisms of balance to the scaling of arm-swing frequency.
    Ko JH; Wang Z; Challis JH; Newell KM
    J Biomech; 2015 Nov; 48(14):3825-9. PubMed ID: 26431753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of dynamic postural control to attend manual steadiness constraints.
    Teixeira LA; Coutinho JFS; Coelho DB
    J Neurophysiol; 2018 Aug; 120(2):693-702. PubMed ID: 29718807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.