BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2810348)

  • 21. Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression.
    Hoag HM; Martel J; Gauthier C; Tenenhouse HS
    J Clin Invest; 1999 Sep; 104(6):679-86. PubMed ID: 10491403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pH on the low and high affinity Na+-phosphate co-transport system in rat renal cortex.
    Bindels RJ; van den Broek LA; van Os CH
    Prog Clin Biol Res; 1988; 252():359-64. PubMed ID: 3347626
    [No Abstract]   [Full Text] [Related]  

  • 23. Glucocorticoids inhibit intestinal phosphate absorption in developing rabbits.
    Borowitz SM; Granrud GS
    J Nutr; 1992 Jun; 122(6):1273-9. PubMed ID: 1588444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of renal basolateral Na-phosphate cotransporter by protein kinase A and Ca-dependent protein kinases.
    Kear F; Ruiz OS; Arruda JA
    Miner Electrolyte Metab; 1993; 19(6):373-6. PubMed ID: 8164619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning of a rabbit renal Na-Pi cotransporter, which is regulated by dietary phosphate.
    Verri T; Markovich D; Perego C; Norbis F; Stange G; Sorribas V; Biber J; Murer H
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F626-33. PubMed ID: 7733319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of renal type IIa Na+/Pi cotransporter kinetics by the arginine modifier phenylglyoxal.
    Forster IC; Köhler K; Stange G; Biber J; Murer H
    J Membr Biol; 2002 May; 187(2):85-96. PubMed ID: 12029367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes.
    Forster IC; Traebert M; Jankowski M; Stange G; Biber J; Murer H
    J Physiol; 1999 Jun; 517 ( Pt 2)(Pt 2):327-40. PubMed ID: 10332085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of arginine modification on kidney brush-border-membrane transport activity.
    Strevey J; Brunette MG; Béliveau R
    Biochem J; 1984 Nov; 223(3):793-802. PubMed ID: 6508741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of Na+-Pi cotransporter in small gut brush border by phosphonocarboxylic acids.
    Loghman-Adham M; Szczepanska-Konkel M; Yusufi AN; Van Scoy M; Dousa TP
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G244-9. PubMed ID: 2950771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
    Virkki LV; Forster IC; Biber J; Murer H
    Am J Physiol Renal Physiol; 2005 May; 288(5):F969-81. PubMed ID: 15613617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of proximal tubular apical Na/Pi cotransport.
    Murer H; Biber J
    Exp Nephrol; 1996; 4(4):201-4. PubMed ID: 8864723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unique mechanism of inhibition of Na+-amino acid cotransport during chronic ileal inflammation.
    Sundaram U; Wisel S; Fromkes JJ
    Am J Physiol; 1998 Sep; 275(3):G483-9. PubMed ID: 9724259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional expression and characterization of the wild-type mammalian renal cortex sodium/phosphate cotransporter and an 215R mutant in Saccharomyces cerevisiae.
    Bernhardt F; Schoner W; Schroeder B; Breves G; Scheiner-Bobis G
    Biochemistry; 1999 Oct; 38(41):13551-9. PubMed ID: 10521262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relative contributions of Na+-dependent phosphate co-transporters to phosphate transport in mouse kidney: RNase H-mediated hybrid depletion analysis.
    Miyamoto K; Segawa H; Morita K; Nii T; Tatsumi S; Taketani Y; Takeda E
    Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):735-9. PubMed ID: 9581550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normal molecular size of the Na(+)-phosphate cotransporter and normal Na(+)-dependent binding of phosphonoformic acid in renal brush border membranes of X-linked Hyp mice.
    Tenenhouse HS; Lee J; Harvey N; Potier M; Jette M; Beliveau R
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1288-93. PubMed ID: 2143899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport.
    Zhao N; Tenenhouse HS
    Endocrinology; 2000 Jun; 141(6):2159-65. PubMed ID: 10830304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium and lithium interactions with the Na+/Dicarboxylate cotransporter.
    Pajor AM; Hirayama BA; Loo DD
    J Biol Chem; 1998 Jul; 273(30):18923-9. PubMed ID: 9668069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium-phosphate cotransport in human red blood cells. Kinetics and role in membrane metabolism.
    Shoemaker DG; Bender CA; Gunn RB
    J Gen Physiol; 1988 Oct; 92(4):449-74. PubMed ID: 3204363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation to phosphate depletion in opossum kidney cells.
    Saxena S; Dansby L; Allon M
    Biochem Biophys Res Commun; 1995 Nov; 216(1):141-7. PubMed ID: 7488080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of Na+-dependent phosphate transport by group-specific covalent reagents in rat kidney brush border membrane vesicles. Evidence for the involvement of tyrosine and sulfhydryl groups on the interior of the membrane.
    Pratt RD; Pedersen PL
    Arch Biochem Biophys; 1989 Jan; 268(1):9-19. PubMed ID: 2912384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.