BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2810354)

  • 1. Endogenous D-glucose transport in oocytes of Xenopus laevis.
    Weber WM; Schwarz W; Passow H
    J Membr Biol; 1989 Oct; 111(1):93-102. PubMed ID: 2810354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of a Na+/D-glucose cotransporter from rat intestine expressed in oocytes of Xenopus laevis with the endogenous cotransporter.
    Weber WM; Püschel B; Steffgen J; Koepsell H; Schwarz W
    Biochim Biophys Acta; 1991 Mar; 1063(1):73-80. PubMed ID: 2015263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter.
    Chen XZ; Coady MJ; Jalal F; Wallendorff B; Lapointe JY
    Biophys J; 1997 Nov; 73(5):2503-10. PubMed ID: 9370443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Na-alanine cotransport in oocytes of Xenopus laevis during meiotic maturation is voltage-regulated.
    Jung D; Lafaire AV; Schwarz W
    Pflugers Arch; 1984 Sep; 402(1):39-41. PubMed ID: 6504692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring ion transport activities in Xenopus oocytes using the ion-trap technique.
    Blanchard MG; Longpré JP; Wallendorff B; Lapointe JY
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1464-72. PubMed ID: 18829896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of hSGLT1 during Na+/glucose cotransport.
    Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM
    J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):49-62. PubMed ID: 1542106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two endogenous methyl-alpha-D-glucopyranoside uptake activities in Xenopus oocytes.
    Nagata K; Ichikawa O
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Sep; 112(1):115-22. PubMed ID: 7584840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation kinetics of the Na+/glucose cotransporter.
    Loo DD; Hazama A; Supplisson S; Turk E; Wright EM
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5767-71. PubMed ID: 8516326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urea transport by cotransporters.
    Leung DW; Loo DD; Hirayama BA; Zeuthen T; Wright EM
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):251-7. PubMed ID: 11034615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na
    Coady MJ; Wallendorff B; Lapointe JY
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F467-F474. PubMed ID: 28592437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive water and ion transport by cotransporters.
    Loo DD; Hirayama BA; Meinild AK; Chandy G; Zeuthen T; Wright EM
    J Physiol; 1999 Jul; 518(Pt 1):195-202. PubMed ID: 10373701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous L-glutamate transport in oocytes of Xenopus laevis.
    Steffgen J; Koepsell H; Schwarz W
    Biochim Biophys Acta; 1991 Jul; 1066(1):14-20. PubMed ID: 1676599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Na(+) / D-glucose cotransport in Xenopus laevis oocytes by injection of poly(A)(+) RNA isolated from lobster (Homarus americanus) hepatopancreas.
    Mandal A; Verri T; Mandal PK; Storelli C; Ahearn GA
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Jul; 135(3):467-75. PubMed ID: 12829054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake.
    Kottra G; Daniel H
    J Pharmacol Exp Ther; 2007 Aug; 322(2):829-35. PubMed ID: 17495124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic.
    Umbach JA; Coady MJ; Wright EM
    Biophys J; 1990 Jun; 57(6):1217-24. PubMed ID: 1697483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes.
    Blasco T; Aramayona JJ; Alcalde AI; Catalán J; Sarasa M; Sorribas V
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F799-810. PubMed ID: 12812916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454.
    Díez-Sampedro A; Loo DD; Wright EM; Zampighi GA; Hirayama BA
    Biochemistry; 2004 Oct; 43(41):13175-84. PubMed ID: 15476411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A negative slope in the current-voltage relationship of the Na+/K+ pump in Xenopus oocytes produced by reduction of external [K+].
    Rakowski RF; Vasilets LA; LaTona J; Schwarz W
    J Membr Biol; 1991 Apr; 121(2):177-87. PubMed ID: 1880791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine.
    Birnir B; Loo DD; Wright EM
    Pflugers Arch; 1991 Mar; 418(1-2):79-85. PubMed ID: 2041729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.