BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28103682)

  • 1. Mapping the Phosphorylation Pattern of Drosophila melanogaster RNA Polymerase II Carboxyl-Terminal Domain Using Ultraviolet Photodissociation Mass Spectrometry.
    Mayfield JE; Robinson MR; Cotham VC; Irani S; Matthews WL; Ram A; Gilmour DS; Cannon JR; Zhang YJ; Brodbelt JS
    ACS Chem Biol; 2017 Jan; 12(1):153-162. PubMed ID: 28103682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription.
    Irani S; Sipe SN; Yang W; Burkholder NT; Lin B; Sim K; Matthews WL; Brodbelt JS; Zhang Y
    J Biol Chem; 2019 May; 294(21):8592-8605. PubMed ID: 30971428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assaying CTD kinases in vitro and phosphorylation-modulated properties of RNA polymerase II in vivo.
    Morris DP; Lee JM; Sterner DE; Brickey WJ; Greenleaf AL
    Methods; 1997 Jul; 12(3):264-75. PubMed ID: 9237170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Spatiotemporal Dynamics of Phosphorylation of RNA Polymerase II Carboxy-Terminal Domain by Ultraviolet Photodissociation Mass Spectrometry.
    Escobar EE; Venkat Ramani MK; Zhang Y; Brodbelt JS
    J Am Chem Soc; 2021 Jun; 143(22):8488-8498. PubMed ID: 34053220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain.
    Gibbs EB; Lu F; Portz B; Fisher MJ; Medellin BP; Laremore TN; Zhang YJ; Gilmour DS; Showalter SA
    Nat Commun; 2017 May; 8():15233. PubMed ID: 28497798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain.
    Portz B; Lu F; Gibbs EB; Mayfield JE; Rachel Mehaffey M; Zhang YJ; Brodbelt JS; Showalter SA; Gilmour DS
    Nat Commun; 2017 May; 8():15231. PubMed ID: 28497792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription.
    Ramani MKV; Escobar EE; Irani S; Mayfield JE; Moreno RY; Butalewicz JP; Cotham VC; Wu H; Tadros M; Brodbelt JS; Zhang YJ
    ACS Chem Biol; 2020 Aug; 15(8):2259-2272. PubMed ID: 32568517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heptad-Specific Phosphorylation of RNA Polymerase II CTD.
    Schüller R; Forné I; Straub T; Schreieck A; Texier Y; Shah N; Decker TM; Cramer P; Imhof A; Eick D
    Mol Cell; 2016 Jan; 61(2):305-14. PubMed ID: 26799765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads.
    Lu F; Portz B; Gilmour DS
    Mol Cell; 2019 Mar; 73(6):1232-1242.e4. PubMed ID: 30765194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase activity of Ssu72.
    Luo Y; Yogesha SD; Cannon JR; Yan W; Ellington AD; Brodbelt JS; Zhang Y
    ACS Chem Biol; 2013 Sep; 8(9):2042-52. PubMed ID: 23844594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster.
    Tombácz I; Schauer T; Juhász I; Komonyi O; Boros I
    Gene; 2009 Oct; 446(2):58-67. PubMed ID: 19632310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping RNAPII CTD Phosphorylation Reveals That the Identity and Modification of Seventh Heptad Residues Direct Tyr1 Phosphorylation.
    Burkholder NT; Sipe SN; Escobar EE; Venkatramani M; Irani S; Yang W; Wu H; Matthews WM; Brodbelt JS; Zhang Y
    ACS Chem Biol; 2019 Oct; 14(10):2264-2275. PubMed ID: 31553563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-transcriptional splicing and the CTD code.
    Custódio N; Carmo-Fonseca M
    Crit Rev Biochem Mol Biol; 2016 Sep; 51(5):395-411. PubMed ID: 27622638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.
    Liu P; Greenleaf AL; Stiller JW
    Mol Biol Evol; 2008 Apr; 25(4):719-27. PubMed ID: 18209193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment.
    Eissenberg JC; Shilatifard A; Dorokhov N; Michener DE
    Mol Genet Genomics; 2007 Feb; 277(2):101-14. PubMed ID: 17001490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging roles for RNA polymerase II CTD in Arabidopsis.
    Hajheidari M; Koncz C; Eick D
    Trends Plant Sci; 2013 Nov; 18(11):633-43. PubMed ID: 23910452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-specific requirement of RNA polymerase II CTD phosphorylation.
    Drogat J; Hermand D
    Mol Microbiol; 2012 Jun; 84(6):995-1004. PubMed ID: 22553990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability.
    Chapman RD; Palancade B; Lang A; Bensaude O; Eick D
    Nucleic Acids Res; 2004; 32(1):35-44. PubMed ID: 14704341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.