These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 28103687)
21. Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Sunbul M; Jäschke A Angew Chem Int Ed Engl; 2013 Dec; 52(50):13401-4. PubMed ID: 24133044 [No Abstract] [Full Text] [Related]
22. Fluorescence imaging of cellular metabolites with RNA. Paige JS; Nguyen-Duc T; Song W; Jaffrey SR Science; 2012 Mar; 335(6073):1194. PubMed ID: 22403384 [TBL] [Abstract][Full Text] [Related]
23. mRNA imaging in the chloroplast of Chlamydomonas reinhardtii using the light-up aptamer Spinach. Guzmán-Zapata D; Domínguez-Anaya Y; Macedo-Osorio KS; Tovar-Aguilar A; Castrejón-Flores JL; Durán-Figueroa NV; Badillo-Corona JA J Biotechnol; 2017 Jun; 251():186-188. PubMed ID: 28359866 [TBL] [Abstract][Full Text] [Related]
24. Light-up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells. Ilgu M; Ray J; Bendickson L; Wang T; Geraskin IM; Kraus GA; Nilsen-Hamilton M Methods; 2016 Apr; 98():26-33. PubMed ID: 26707205 [TBL] [Abstract][Full Text] [Related]
25. Live imaging of mRNA using RNA-stabilized fluorogenic proteins. Wu J; Zaccara S; Khuperkar D; Kim H; Tanenbaum ME; Jaffrey SR Nat Methods; 2019 Sep; 16(9):862-865. PubMed ID: 31471614 [TBL] [Abstract][Full Text] [Related]
26. A ribose modification of Spinach aptamer accelerates lead(ii) cation association in vitro. Savage JC; Shinde P; Bächinger HP; Davare MA; Shinde U Chem Commun (Camb); 2019 May; 55(42):5882-5885. PubMed ID: 31037281 [TBL] [Abstract][Full Text] [Related]
27. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe. Okamoto A; Ikeda S; Kubota T; Yuki M; Yanagisawa H Nucleic Acids Symp Ser (Oxf); 2009; (53):49-50. PubMed ID: 19749254 [TBL] [Abstract][Full Text] [Related]
28. Spinach RNA aptamer detects lead(II) with high selectivity. DasGupta S; Shelke SA; Li NS; Piccirilli JA Chem Commun (Camb); 2015 May; 51(43):9034-7. PubMed ID: 25940073 [TBL] [Abstract][Full Text] [Related]
29. A conformation-induced fluorescence method for microRNA detection. Aw SS; Tang MX; Teo YN; Cohen SM Nucleic Acids Res; 2016 Jun; 44(10):e92. PubMed ID: 26951376 [TBL] [Abstract][Full Text] [Related]
30. RNA-based fluorescent biosensors for live cell detection of bacterial sRNA. Kitto RZ; Christiansen KE; Hammond MC Biopolymers; 2021 Jan; 112(1):e23394. PubMed ID: 32786000 [TBL] [Abstract][Full Text] [Related]
31. Live-cell imaging of multiple endogenous mRNAs permits the direct observation of RNA granule dynamics. Yatsuzuka K; Sato SI; Pe KB; Katsuda Y; Takashima I; Watanabe M; Uesugi M Chem Commun (Camb); 2018 Jun; 54(52):7151-7154. PubMed ID: 29882951 [TBL] [Abstract][Full Text] [Related]
32. Selection of Intracellularly Functional RNA Mimics of Green Fluorescent Protein Using Fluorescence-Activated Cell Sorting. Zou J; Huang X; Wu L; Chen G; Dong J; Cui X; Tang Z J Mol Evol; 2015 Dec; 81(5-6):172-8. PubMed ID: 26573804 [TBL] [Abstract][Full Text] [Related]
33. Amplified Tandem Spinach-Based Aptamer Transcription Enables Low Background miRNA Detection. Tang X; Deng R; Sun Y; Ren X; Zhou M; Li J Anal Chem; 2018 Aug; 90(16):10001-10008. PubMed ID: 30016869 [TBL] [Abstract][Full Text] [Related]
34. Imaging intracellular RNA distribution and dynamics in living cells. Tyagi S Nat Methods; 2009 May; 6(5):331-8. PubMed ID: 19404252 [TBL] [Abstract][Full Text] [Related]
35. Small-molecule fluorescent probes for specific RNA targets. Murata A; Sato S; Kawazoe Y; Uesugi M Chem Commun (Camb); 2011 Apr; 47(16):4712-4. PubMed ID: 21412566 [TBL] [Abstract][Full Text] [Related]
36. Genetically Encoded Catalytic Hairpin Assembly for Sensitive RNA Imaging in Live Cells. Karunanayake Mudiyanselage APKK; Yu Q; Leon-Duque MA; Zhao B; Wu R; You M J Am Chem Soc; 2018 Jul; 140(28):8739-8745. PubMed ID: 29944357 [TBL] [Abstract][Full Text] [Related]
37. Development of encoded Broccoli RNA aptamers for live cell imaging of alphavirus genomic and subgenomic RNAs. Nilaratanakul V; Hauer DA; Griffin DE Sci Rep; 2020 Mar; 10(1):5233. PubMed ID: 32251299 [TBL] [Abstract][Full Text] [Related]
38. A fluorogenic RNA aptamer nanodevice for the low background imaging of mRNA in living cells. Xu T; Sun Y; Yu S; Wu S; Su Y; Tian Y; Zhou Y; Zhu JJ Chem Commun (Camb); 2022 Jan; 58(9):1354-1357. PubMed ID: 34988573 [TBL] [Abstract][Full Text] [Related]
39. Hybridization-sensitive fluorescent oligonucleotide probe conjugated with a bulky module for compartment-specific mRNA monitoring in a living cell. Hayashi G; Yanase M; Takeda K; Sakakibara D; Sakamoto R; Wang DO; Okamoto A Bioconjug Chem; 2015 Mar; 26(3):412-7. PubMed ID: 25710491 [TBL] [Abstract][Full Text] [Related]
40. Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers. Sunbul M; Arora A; Jäschke A Methods Mol Biol; 2018; 1649():289-304. PubMed ID: 29130205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]