These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823 [TBL] [Abstract][Full Text] [Related]
6. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047 [TBL] [Abstract][Full Text] [Related]
8. Experimental Design and Power Calculation for RNA-seq Experiments. Wu Z; Wu H Methods Mol Biol; 2016; 1418():379-90. PubMed ID: 27008024 [TBL] [Abstract][Full Text] [Related]
9. Power analysis and sample size estimation for RNA-Seq differential expression. Ching T; Huang S; Garmire LX RNA; 2014 Nov; 20(11):1684-96. PubMed ID: 25246651 [TBL] [Abstract][Full Text] [Related]
10. Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data. Suo C; Calza S; Salim A; Pawitan Y Bioinformatics; 2014 Feb; 30(4):506-13. PubMed ID: 24307704 [TBL] [Abstract][Full Text] [Related]
11. ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences. Yang W; Rosenstiel PC; Schulenburg H BMC Genomics; 2016 Aug; 17():541. PubMed ID: 27488180 [TBL] [Abstract][Full Text] [Related]
12. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Vijay N; Poelstra JW; Künstner A; Wolf JB Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089 [TBL] [Abstract][Full Text] [Related]
13. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads. Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631 [TBL] [Abstract][Full Text] [Related]
14. DECODE: an integrated differential co-expression and differential expression analysis of gene expression data. Lui TW; Tsui NB; Chan LW; Wong CS; Siu PM; Yung BY BMC Bioinformatics; 2015 May; 16():182. PubMed ID: 26026612 [TBL] [Abstract][Full Text] [Related]
15. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Gong T; Szustakowski JD Bioinformatics; 2013 Apr; 29(8):1083-5. PubMed ID: 23428642 [TBL] [Abstract][Full Text] [Related]
16. Bioinformatic Analysis of MicroRNA Sequencing Data. Fu X; Dong D Methods Mol Biol; 2018; 1751():109-125. PubMed ID: 29508293 [TBL] [Abstract][Full Text] [Related]
17. Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS. Park JW; Tokheim C; Shen S; Xing Y Methods Mol Biol; 2013; 1038():171-9. PubMed ID: 23872975 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Lu B; Zeng Z; Shi T Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030 [TBL] [Abstract][Full Text] [Related]
19. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data. Monger C; Motheramgari K; McSharry J; Barron N; Clarke C Methods Mol Biol; 2017; 1603():169-186. PubMed ID: 28493130 [TBL] [Abstract][Full Text] [Related]
20. Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis. Rigaill G; Balzergue S; Brunaud V; Blondet E; Rau A; Rogier O; Caius J; Maugis-Rabusseau C; Soubigou-Taconnat L; Aubourg S; Lurin C; Martin-Magniette ML; Delannoy E Brief Bioinform; 2018 Jan; 19(1):65-76. PubMed ID: 27742662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]