These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28104123)

  • 1. Diffusion Tensor Imaging MRI With Spin-Echo Sequence and Long-Duration Measurement for Evaluation of Renal Fibrosis in a Rat Fibrosis Model.
    Kaimori JY; Isaka Y; Hatanaka M; Yamamoto S; Ichimaru N; Fujikawa A; Shibata H; Fujimori A; Miyoshi S; Yokawa T; Kuroda K; Moriyama T; Rakugi H; Takahara S
    Transplant Proc; 2017; 49(1):145-152. PubMed ID: 28104123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of kidney fibrosis in diabetic nephropathy by long diffusion tensor imaging MRI with spin-echo sequence.
    Kaimori JY; Isaka Y; Hatanaka M; Yamamoto S; Ichimaru N; Fujikawa A; Shibata H; Fujimori A; Miyoshi S; Yokawa T; Kuroda K; Moriyama T; Rakugi H; Takahara S
    Sci Rep; 2017 Jul; 7(1):5731. PubMed ID: 28720778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of renal fibrosis in a rat model of unilateral ureteral obstruction with diffusion kurtosis imaging: Comparison with α-SMA expression and
    Li A; Liang L; Liang P; Hu Y; Xu C; Hu X; Shen Y; Hu D; Li Z; Kamel IR
    Magn Reson Imaging; 2020 Feb; 66():176-184. PubMed ID: 31484043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Feasibility of susceptibility weighted imaging in the evaluation of renal fibrosis induced by unilateral ureteral obstruction in white rabbits].
    Zhang JG; Xing ZY; Zha TT; Tian XJ; Xing SJ; Pan X; Xu L; Pan L; Xing W; Chen J
    Zhonghua Yi Xue Za Zhi; 2017 Dec; 97(45):3573-3578. PubMed ID: 29275598
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy.
    Hueper K; Hartung D; Gutberlet M; Gueler F; Sann H; Husen B; Wacker F; Reiche D
    Invest Radiol; 2012 Jul; 47(7):430-7. PubMed ID: 22659594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal assessment of rabbit renal fibrosis induced by unilateral ureteral obstruction using two-dimensional susceptibility weighted imaging.
    Zhang JG; Xing ZY; Zha TT; Tian XJ; Du YN; Chen J; Xing W
    J Magn Reson Imaging; 2018 Jun; 47(6):1572-1577. PubMed ID: 29236342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: An experimental study in a rabbit model of unilateral ureter obstruction.
    Woo S; Cho JY; Kim SY; Kim SH
    Magn Reson Imaging; 2018 Sep; 51():104-112. PubMed ID: 29738802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of intravoxel incoherent motion MRI to assess renal fibrosis in a rat model of unilateral ureteral obstruction.
    Cai XR; Yu J; Zhou QC; Du B; Feng YZ; Liu XL
    J Magn Reson Imaging; 2016 Sep; 44(3):698-706. PubMed ID: 26841951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of T1 Mapping and T1rho Values with Conventional Diffusion-weighted Imaging to Assess Fibrosis in a Rat Model of Unilateral Ureteral Obstruction.
    Hu G; Liang W; Wu M; Lai C; Mei Y; Li Y; Xu J; Luo L; Quan X
    Acad Radiol; 2019 Jan; 26(1):22-29. PubMed ID: 29705280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease.
    Virgincar RS; Wong AK; Barck KH; Webster JD; Hung J; Caplazi P; Choy MK; Forrest WF; Bell LC; de Crespigny AJ; Dunlap D; Jones C; Kim DE; Weimer RM; Shaw AS; Brightbill HD; Xie L
    Am J Physiol Renal Physiol; 2024 Aug; 327(2):F235-F244. PubMed ID: 38867676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravoxel incoherent motion and diffusion tensor imaging of early renal fibrosis induced in a murine model of streptozotocin induced diabetes.
    Yan YY; Hartono S; Hennedige T; Koh TS; Chan CM; Zhou L; Rumpel H; Martarello L; Khoo JB; Koh DM; Chuang KH; Tony Lim KH; Dan YY; Thng CH
    Magn Reson Imaging; 2017 May; 38():71-76. PubMed ID: 28038964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction.
    Togao O; Doi S; Kuro-o M; Masaki T; Yorioka N; Takahashi M
    Radiology; 2010 Jun; 255(3):772-80. PubMed ID: 20406881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Renal Fibrosis with R2* Histogram Analysis of the Whole Cortex in a Unilateral Ureteral Obstruction Model.
    Zha T; Ren X; Xing Z; Zhang J; Tian X; Du Y; Xing W; Chen J
    Acad Radiol; 2019 Aug; 26(8):e202-e207. PubMed ID: 30111497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of magnetic resonance diffusion tensor imaging and clinical findings of cervical myelopathy.
    Yoo WK; Kim TH; Hai DM; Sundaram S; Yang YM; Park MS; Kim YC; Kwak YH; Ohn SH; Kim SW
    Spine J; 2013 Aug; 13(8):867-76. PubMed ID: 23523441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-weighted MRI does not reflect kidney fibrosis in a rat model of fibrosis.
    Boor P; Perkuhn M; Weibrecht M; Zok S; Martin IV; Gieseke J; Schoth F; Ostendorf T; Kuhl C; Floege J
    J Magn Reson Imaging; 2015 Oct; 42(4):990-8. PubMed ID: 25630829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation.
    Hueper K; Khalifa AA; Bräsen JH; Vo Chieu VD; Gutberlet M; Wintterle S; Lehner F; Richter N; Peperhove M; Tewes S; Weber K; Haller H; Wacker F; Gwinner W; Gueler F; Hartung D
    J Magn Reson Imaging; 2016 Jul; 44(1):112-21. PubMed ID: 26778459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Chemical Exchange Saturation Transfer and Magnetization Transfer MRI in Detecting Metabolic and Structural Changes of Renal Fibrosis in an Animal Model at 3T.
    Li A; Xu C; Liang P; Hu Y; Shen Y; Hu D; Li Z; Kamel IR
    Korean J Radiol; 2020 May; 21(5):588-597. PubMed ID: 32323504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiparametric magnetic resonance imaging of experimental chronic kidney disease: A quantitative correlation study with histology.
    Schley G; Jordan J; Ellmann S; Rosen S; Eckardt KU; Uder M; Willam C; Bäuerle T
    PLoS One; 2018; 13(7):e0200259. PubMed ID: 30011301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of BOLD MRI and DTI for the evaluation of renal effect related to viscosity of iodinated contrast agent in a rat model.
    Wang Y; Ren K; Liu Y; Sun WG; Wang JH; Zhang X; Wu CH
    J Magn Reson Imaging; 2017 Nov; 46(5):1320-1331. PubMed ID: 28248433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Application in Renal Fibrosis: A Radiological-Pathological-Based Analysis.
    Zhao D; Wang W; Niu YY; Ren XH; Shen AJ; Xiang YS; Xie HY; Wu LH; Yu C; Zhang YY
    Am J Nephrol; 2024; 55(3):334-344. PubMed ID: 38228096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.