BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28104231)

  • 1. Isolation, characterization and antimicrobial activities of polyacetylene glycosides from Coreopsis tinctoria Nutt.
    Guo J; Wang A; Yang K; Ding H; Hu Y; Yang Y; Huang S; Xu J; Liu T; Yang H; Xin Z
    Phytochemistry; 2017 Apr; 136():65-69. PubMed ID: 28104231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coreosides A-D, C14-polyacetylene glycosides from the capitula of Coreopsis tinctoria and its anti-inflammatory activity against COX-2.
    Zhang Y; Shi S; Zhao M; Chai X; Tu P
    Fitoterapia; 2013 Jun; 87():93-7. PubMed ID: 23562631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One new linear C14 polyacetylene glucoside with antiadipogenic activities on 3T3-L1 cells from the capitula of Coreopsis tinctoria.
    Du D; Jin T; Xing ZH; Hu LQ; Long D; Li SF; Gong M
    J Asian Nat Prod Res; 2016 Aug; 18(8):784-90. PubMed ID: 26959764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel polyacetylenes from Coreopsis tinctoria Nutt.
    Liu Y; Du D; Liang Y; Xin G; Huang BZ; Huang W
    J Asian Nat Prod Res; 2015; 17(7):744-9. PubMed ID: 25563069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemical components of
    Begmatov N; Li J; Bobakulov K; Numonov S; Aisa HA
    Nat Prod Res; 2020 Jun; 34(12):1772-1776. PubMed ID: 30499349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New phenolic compounds from Coreopsis tinctoria Nutt. and their antioxidant and angiotensin i-converting enzyme inhibitory activities.
    Wang W; Chen W; Yang Y; Liu T; Yang H; Xin Z
    J Agric Food Chem; 2015 Jan; 63(1):200-7. PubMed ID: 25516207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolic glycosides and ionone glycoside from the stem of Sargentodoxa cuneata.
    Chang J; Case R
    Phytochemistry; 2005 Dec; 66(23):2752-8. PubMed ID: 16271734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical constituents of Solanum coagulans and their antimicrobial activities.
    Qin XJ; Lunga PK; Zhao YL; Liu YP; Luo XD
    Chin J Nat Med; 2016 Apr; 14(4):308-312. PubMed ID: 27114320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical constituents from the leaves of Boehmeria rugulosa with antidiabetic and antimicrobial activities.
    Semwal DK; Rawat U; Semwal R; Singh R; Krishan P; Singh M; Singh GJ
    J Asian Nat Prod Res; 2009 Dec; 11(12):1045-55. PubMed ID: 20183275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial acylphloroglucinols from the leaves of Rhodomyrtus tomentosa.
    Liu HX; Tan HB; Qiu SX
    J Asian Nat Prod Res; 2016 Jun; 18(6):535-41. PubMed ID: 26727290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C₁₄-polyacetylene glucosides from Codonopsis pilosula.
    Jiang YP; Liu YF; Guo QL; Jiang ZB; Xu CB; Zhu CG; Yang YC; Lin S; Shi JG
    J Asian Nat Prod Res; 2015; 17(6):601-14. PubMed ID: 26009940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four new C
    Xu K; Feng ZM; Yang YN; Jiang JS; Zhang PC
    J Asian Nat Prod Res; 2017 Feb; 19(2):121-127. PubMed ID: 27790920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three new polyacetylene glycosides (PAGs) from the aerial part of Launaea capitata (Asteraceae) with anti-biofilm activity against Staphylococcus aureus.
    Emad F; Khalafalah AK; El Sayed MA; Mohamed AH; Stadler M; Helaly SE
    Fitoterapia; 2020 Jun; 143():104548. PubMed ID: 32209391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Chemical constituents of Coreopsis tinctoria].
    Zhang Y; Tu PF
    Zhongguo Zhong Yao Za Zhi; 2012 Dec; 37(23):3581-4. PubMed ID: 23477144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acylated flavonol glycosides from leaves of Stenochlaena palustris.
    Liu H; Orjala J; Sticher O; Rali T
    J Nat Prod; 1999 Jan; 62(1):70-5. PubMed ID: 9917285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two new thiophene polyacetylene glycosides from Atractylodes lancea.
    Feng ZM; Xu K; Wang W; Du N; Zhang JH; Yang YN; Jiang JS; Zhang PC
    J Asian Nat Prod Res; 2018 Jun; 20(6):531-537. PubMed ID: 29614875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylenic glucosides from Microglossa pyrifolia.
    Rücker G; Kehrbaum S; Sakulas H; Lawong B; Goeltenboth F
    Planta Med; 1992 Jun; 58(3):266-9. PubMed ID: 1409982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalicosides A1-A3, minor cycloartane bisdesmosides from Thalictrum minus.
    Gromova AS; Lutsky VI; Li D; Wood SG; Owen NL; Semenov AA; Grant DM
    J Nat Prod; 2000 Jul; 63(7):911-4. PubMed ID: 10924164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two new polyacetylene glycosides from the roots of Codonopsis tangshen Oliv.
    Sun J; Wang L; Wang M; Wang Z; Li F
    Nat Prod Res; 2016 Oct; 30(20):2338-43. PubMed ID: 27109245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new phthalazinone derivative and a new isoflavonoid glycoside from lichen-associated Amycolatopsis sp.
    Zheng KX; Jiang Y; Jiang JX; Huang R; He J; Wu SH
    Fitoterapia; 2019 Jun; 135():85-89. PubMed ID: 31028818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.