BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28104455)

  • 1. A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance.
    Bailey J; Shaw A; Fischer R; Ryan BJ; Kessler BM; McCullagh J; Wade-Martins R; Channon KM; Crabtree MJ
    Free Radic Biol Med; 2017 Mar; 104():214-225. PubMed ID: 28104455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice.
    Chuaiphichai S; Crabtree MJ; Mcneill E; Hale AB; Trelfa L; Channon KM; Douglas G
    Br J Pharmacol; 2017 Apr; 174(8):657-671. PubMed ID: 28128438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells.
    Sugiyama T; Levy BD; Michel T
    J Biol Chem; 2009 May; 284(19):12691-700. PubMed ID: 19286667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression.
    Crabtree MJ; Tatham AL; Al-Wakeel Y; Warrick N; Hale AB; Cai S; Channon KM; Alp NJ
    J Biol Chem; 2009 Jan; 284(2):1136-44. PubMed ID: 19011239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways.
    Crabtree MJ; Tatham AL; Hale AB; Alp NJ; Channon KM
    J Biol Chem; 2009 Oct; 284(41):28128-28136. PubMed ID: 19666465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells.
    Shimizu S; Shiota K; Yamamoto S; Miyasaka Y; Ishii M; Watabe T; Nishida M; Mori Y; Yamamoto T; Kiuchi Y
    Free Radic Biol Med; 2003 May; 34(10):1343-52. PubMed ID: 12726922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin in vascular endothelial cells.
    Hattori Y; Nakanishi N; Akimoto K; Yoshida M; Kasai K
    Arterioscler Thromb Vasc Biol; 2003 Feb; 23(2):176-82. PubMed ID: 12588756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cigarette smoke constituents cause endothelial nitric oxide synthase dysfunction and uncoupling due to depletion of tetrahydrobiopterin with degradation of GTP cyclohydrolase.
    Abdelghany TM; Ismail RS; Mansoor FA; Zweier JR; Lowe F; Zweier JL
    Nitric Oxide; 2018 Jun; 76():113-121. PubMed ID: 29524646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrahydrobiopterin: a vascular redox target to improve endothelial function.
    Channon KM
    Curr Vasc Pharmacol; 2012 Nov; 10(6):705-8. PubMed ID: 23259560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cerebral microvasculature in transgenic mice with endothelium targeted over-expression of GTP-cyclohydrolase I.
    Santhanam AV; d'Uscio LV; Katusic ZS
    Brain Res; 2015 Nov; 1625():198-205. PubMed ID: 26343845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation.
    Chuaiphichai S; McNeill E; Douglas G; Crabtree MJ; Bendall JK; Hale AB; Alp NJ; Channon KM
    Hypertension; 2014 Sep; 64(3):530-40. PubMed ID: 24777984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pivotal role for tryptophan 447 in enzymatic coupling of human endothelial nitric oxide synthase (eNOS): effects on tetrahydrobiopterin-dependent catalysis and eNOS dimerization.
    Benson MA; Batchelor H; Chuaiphichai S; Bailey J; Zhu H; Stuehr DJ; Bhattacharya S; Channon KM; Crabtree MJ
    J Biol Chem; 2013 Oct; 288(41):29836-45. PubMed ID: 23965989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation.
    Cai S; Alp NJ; McDonald D; Smith I; Kay J; Canevari L; Heales S; Channon KM
    Cardiovasc Res; 2002 Sep; 55(4):838-49. PubMed ID: 12176133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing tetrahydrobiopterin in cardiomyocytes adversely affects cardiac redox state and mitochondrial function independently of changes in NO production.
    Sethumadhavan S; Whitsett J; Bennett B; Ionova IA; Pieper GM; Vasquez-Vivar J
    Free Radic Biol Med; 2016 Apr; 93():1-11. PubMed ID: 26826575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension.
    Du YH; Guan YY; Alp NJ; Channon KM; Chen AF
    Circulation; 2008 Feb; 117(8):1045-54. PubMed ID: 18268143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between nitric oxide-mediated endothelial function, eNOS coupling and blood pressure revealed by eNOS-GTP cyclohydrolase 1 double transgenic mice.
    Adlam D; Bendall JK; De Bono JP; Alp NJ; Khoo J; Nicoli T; Yokoyama M; Kawashima S; Channon KM
    Exp Physiol; 2007 Jan; 92(1):119-26. PubMed ID: 17012144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression.
    Douglas G; Hale AB; Patel J; Chuaiphichai S; Al Haj Zen A; Rashbrook VS; Trelfa L; Crabtree MJ; McNeill E; Channon KM
    Cardiovasc Res; 2018 Aug; 114(10):1385-1399. PubMed ID: 29596571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene transfer of human guanosine 5'-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension.
    Zheng JS; Yang XQ; Lookingland KJ; Fink GD; Hesslinger C; Kapatos G; Kovesdi I; Chen AF
    Circulation; 2003 Sep; 108(10):1238-45. PubMed ID: 12925450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling.
    Crabtree MJ; Brixey R; Batchelor H; Hale AB; Channon KM
    J Biol Chem; 2013 Jan; 288(1):561-9. PubMed ID: 23139420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency.
    Crabtree MJ; Hale AB; Channon KM
    Free Radic Biol Med; 2011 Jun; 50(11):1639-46. PubMed ID: 21402147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.