BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28104474)

  • 1. Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules.
    Chau Y; Suen WL; Tse HY; Wong HS
    Eur J Pharm Sci; 2017 Mar; 100():273-279. PubMed ID: 28104474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo.
    Suen WL; Wong HS; Yu Y; Lau LC; Lo AC; Chau Y
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4358-65. PubMed ID: 23722390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-enhanced intrascleral delivery of protein.
    Cheung AC; Yu Y; Tay D; Wong HS; Ellis-Behnke R; Chau Y
    Int J Pharm; 2010 Nov; 401(1-2):16-24. PubMed ID: 20868732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of inertial cavitation in the enhancement of in vitro transscleral drug delivery.
    Razavi A; Clement D; Fowler RA; Birer A; Chavrier F; Mestas JL; Romano F; Chapelon JY; Béglé A; Lafon C
    Ultrasound Med Biol; 2014 Jun; 40(6):1216-27. PubMed ID: 24613634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of Effects of Low-Frequency Ultrasound on Scleral Permeability and Collagen Network.
    Suen WL; Jiang J; Wong HS; Qu J; Chau Y
    Ultrasound Med Biol; 2016 Nov; 42(11):2650-2661. PubMed ID: 27576194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion of macromolecules through sclera.
    Miao H; Wu BD; Tao Y; Li XX
    Acta Ophthalmol; 2013 Feb; 91(1):e1-6. PubMed ID: 22998133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab.
    Wen H; Hao J; Li SK
    J Pharm Sci; 2013 Mar; 102(3):892-903. PubMed ID: 23212655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity.
    Pitkänen L; Ranta VP; Moilanen H; Urtti A
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):641-6. PubMed ID: 15671294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of benzalkonium chloride on transscleral drug delivery.
    Okabe K; Kimura H; Okabe J; Kato A; Shimizu H; Ueda T; Shimada S; Ogura Y
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):703-8. PubMed ID: 15671302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion of high molecular weight compounds through sclera.
    Ambati J; Canakis CS; Miller JW; Gragoudas ES; Edwards A; Weissgold DJ; Kim I; Delori FC; Adamis AP
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1181-5. PubMed ID: 10752958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles.
    Huang D; Wang L; Dong Y; Pan X; Li G; Wu C
    Eur J Pharm Biopharm; 2014 Sep; 88(1):104-15. PubMed ID: 24833007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.
    Thakur RR; Tekko IA; Al-Shammari F; Ali AA; McCarthy H; Donnelly RF
    Drug Deliv Transl Res; 2016 Dec; 6(6):800-815. PubMed ID: 27709355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans.
    Afadzi M; Strand SP; Nilssen EA; Måsøy SE; Johansen TF; Hansen R; Angelsen BA; de L Davies C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):21-33. PubMed ID: 23287910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.
    Srikantha N; Mourad F; Suhling K; Elsaid N; Levitt J; Chung PH; Somavarapu S; Jackson TL
    Exp Eye Res; 2012 Sep; 102():85-92. PubMed ID: 22846670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of intraocular pressure on the transscleral diffusion of high-molecular-weight compounds.
    Cruysberg LP; Nuijts RM; Geroski DH; Gilbert JA; Hendrikse F; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3790-4. PubMed ID: 16186364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo ocular fluorophotometry: delivery of fluoresceinated dextrans via transscleral diffusion in rabbits.
    Berezovsky DE; Patel SR; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7038-45. PubMed ID: 21791594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of sonophoresis efficiency and its dependence on sonication parameters and particle size.
    Lee KL; Zhou Y
    J Ultrasound Med; 2015 Mar; 34(3):519-26. PubMed ID: 25715372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery.
    Tratta E; Pescina S; Padula C; Santi P; Nicoli S
    Eur J Pharm Biopharm; 2014 Sep; 88(1):116-22. PubMed ID: 24816128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics of intraocular drug delivery of Oregon green 488-labeled triamcinolone by subtenon injection using ocular fluorophotometry in rabbit eyes.
    Lee SJ; Kim ES; Geroski DH; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4506-14. PubMed ID: 18503001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced transscleral delivery using superficial ultrasound exposure and drug-loaded hydrogel.
    Hu Y; Weng W; Zhang Y; Zhu Y; Zhang X
    Int J Pharm; 2023 Oct; 645():123359. PubMed ID: 37652279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.