BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 28104886)

  • 1. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.
    Yang Y; Ding L; Han J; Zhang Z; Peng LM
    ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays.
    Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z
    ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches.
    Qiu C; Liu F; Xu L; Deng B; Xiao M; Si J; Lin L; Zhang Z; Wang J; Guo H; Peng H; Peng LM
    Science; 2018 Jul; 361(6400):387-392. PubMed ID: 29903885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics.
    Liu L; Han J; Xu L; Zhou J; Zhao C; Ding S; Shi H; Xiao M; Ding L; Ma Z; Jin C; Zhang Z; Peng LM
    Science; 2020 May; 368(6493):850-856. PubMed ID: 32439787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis.
    Stokes P; Khondaker SI
    Nanotechnology; 2008 Apr; 19(17):175202. PubMed ID: 21825663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-Hard and Repairable Complementary Metal-Oxide-Semiconductor Circuits Integrating n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors.
    Luo M; Zhu M; Wei M; Shao S; Robin M; Wei C; Cui Z; Zhao J; Zhang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49963-49970. PubMed ID: 33095560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling down contact length in complementary carbon nanotube field-effect transistors.
    Liu L; Qiu C; Zhong D; Si J; Zhang Z; Peng LM
    Nanoscale; 2017 Jul; 9(27):9615-9621. PubMed ID: 28665428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices.
    Ding L; Wang S; Zhang Z; Zeng Q; Wang Z; Pei T; Yang L; Liang X; Shen J; Chen Q; Cui R; Li Y; Peng LM
    Nano Lett; 2009 Dec; 9(12):4209-14. PubMed ID: 19995085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube transistors scaled to a 40-nanometer footprint.
    Cao Q; Tersoff J; Farmer DB; Zhu Y; Han SJ
    Science; 2017 Jun; 356(6345):1369-1372. PubMed ID: 28663497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors.
    Xia J; Dong G; Tian B; Yan Q; Zhang H; Liang X; Peng L
    Nanoscale; 2016 May; 8(19):9988-96. PubMed ID: 27121370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoS2 transistors with 1-nanometer gate lengths.
    Desai SB; Madhvapathy SR; Sachid AB; Llinas JP; Wang Q; Ahn GH; Pitner G; Kim MJ; Bokor J; Hu C; Wong HP; Javey A
    Science; 2016 Oct; 354(6308):99-102. PubMed ID: 27846499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Almost perfectly symmetric SWCNT-based CMOS devices and scaling.
    Zhang Z; Wang S; Wang Z; Ding L; Pei T; Hu Z; Liang X; Chen Q; Li Y; Peng LM
    ACS Nano; 2009 Nov; 3(11):3781-7. PubMed ID: 19845337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems.
    Liu L; Ding L; Zhong D; Han J; Wang S; Meng Q; Qiu C; Zhang X; Peng LM; Zhang Z
    ACS Nano; 2019 Feb; 13(2):2526-2535. PubMed ID: 30694653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DC modeling and the source of flicker noise in passivated carbon nanotube transistors.
    Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M
    Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
    Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ballistic two-dimensional InSe transistors.
    Jiang J; Xu L; Qiu C; Peng LM
    Nature; 2023 Apr; 616(7957):470-475. PubMed ID: 36949203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.