These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field. Corr SJ; Raoof M; Mackeyev Y; Phounsavath S; Cheney MA; Cisneros BT; Shur M; Gozin M; McNally PJ; Wilson LJ; Curley SA J Phys Chem C Nanomater Interfaces; 2012 Nov; 116(45):24380-24389. PubMed ID: 23795228 [TBL] [Abstract][Full Text] [Related]
3. The influence of cell and nanoparticle properties on heating and cell death in a radiofrequency field. Mackeyev Y; Mark C; Kumar N; Serda RE Acta Biomater; 2017 Apr; 53():619-630. PubMed ID: 28179157 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current. San BH; Moh SH; Kim KK Int J Hyperthermia; 2013; 29(2):99-105. PubMed ID: 23350813 [TBL] [Abstract][Full Text] [Related]
5. Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine. Tamarov K; Gongalsky M; Osminkina L; Huang Y; Omar M; Yakunin V; Ntziachristos V; Razansky D; Timoshenko V Phys Chem Chem Phys; 2017 May; 19(18):11510-11517. PubMed ID: 28425519 [TBL] [Abstract][Full Text] [Related]
6. Effects of Frequency and Joule Heating on Height Rise between Parallel Electrodes with AC Electric Fields. Anand G; Safaripour S; Snoeyink C Langmuir; 2022 Jan; 38(3):1204-1214. PubMed ID: 35029113 [TBL] [Abstract][Full Text] [Related]
7. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry. Amini SM; Kharrazi S; Rezayat SM; Gilani K Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1452-1462. PubMed ID: 28891351 [TBL] [Abstract][Full Text] [Related]
8. Pilot-scale radiofrequency blanching of potato cuboids: heating uniformity. Zhang Z; Guo C; Gao T; Fu H; Chen Q; Wang Y J Sci Food Agric; 2018 Jan; 98(1):312-320. PubMed ID: 28585268 [TBL] [Abstract][Full Text] [Related]
9. Radio frequency heating of foods: principles, applications and related properties--a review. Piyasena P; Dussault C; Koutchma T; Ramaswamy HS; Awuah GB Crit Rev Food Sci Nutr; 2003; 43(6):587-606. PubMed ID: 14669879 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. Kim KS; Lee SY Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005 [TBL] [Abstract][Full Text] [Related]
11. Sucrose modulation of radiofrequency-induced heating rates and cell death. Pulikkathara M; Mark C; Kumar N; Zaske AM; Serda RE Converg Sci Phys Oncol; 2017 Sep; 3(3):. PubMed ID: 29177085 [TBL] [Abstract][Full Text] [Related]
12. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver. Lee JM; Han JK; Kim SH; Shin KS; Lee JY; Park HS; Hur H; Choi BI Korean J Radiol; 2004; 5(4):258-65. PubMed ID: 15637476 [TBL] [Abstract][Full Text] [Related]
13. Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study. González-Suárez A; Gutierrez-Herrera E; Berjano E; Jimenez Lozano JN; Franco W Lasers Surg Med; 2015 Feb; 47(2):183-95. PubMed ID: 25651998 [TBL] [Abstract][Full Text] [Related]
14. Large improvement of RF transmission efficiency and reception sensitivity for human in vivo Lee BY; Zhu XH; Rupprecht S; Lanagan MT; Yang QX; Chen W Magn Reson Imaging; 2017 Oct; 42():158-163. PubMed ID: 28739392 [TBL] [Abstract][Full Text] [Related]
15. Non-Invasive Radiofrequency Field Treatment to Produce Hepatic Hyperthermia: Efficacy and Safety in Swine. Ho JC; Nguyen L; Law JJ; Ware MJ; Keshishian V; Lara NC; Nguyen T; Curley SA; Corr SJ IEEE J Transl Eng Health Med; 2017; 5():1500109. PubMed ID: 28507824 [TBL] [Abstract][Full Text] [Related]
16. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz. Wang J; Olsen RG; Tang J; Tang Z J Microw Power Electromagn Energy; 2008; 42(2):31-46. PubMed ID: 19227075 [TBL] [Abstract][Full Text] [Related]
17. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation-phantom and porcine liver study. Goldberg SN; Ahmed M; Gazelle GS; Kruskal JB; Huertas JC; Halpern EF; Oliver BS; Lenkinski RE Radiology; 2001 Apr; 219(1):157-65. PubMed ID: 11274551 [TBL] [Abstract][Full Text] [Related]
18. Challenges in Radiofrequency Pasteurization of Shell Eggs: Coagulation Rings. Lau SK; Thippareddi H; Jones D; Negahban M; Subbiah J J Food Sci; 2016 Oct; 81(10):E2492-E2502. PubMed ID: 27650700 [TBL] [Abstract][Full Text] [Related]
19. The effect of sample holder geometry on electromagnetic heating of nanoparticle and NaCl solutions at 13.56 MHz. Li D; Jung YS; Kim HK; Chen J; Geller DA; Shuba MV; Maksimenko SA; Patch S; Forati E; Hanson GW IEEE Trans Biomed Eng; 2012 Dec; 59(12):3468-74. PubMed ID: 22997262 [TBL] [Abstract][Full Text] [Related]
20. Radio Frequency Heating of Carbon Nanotube Composite Materials. Sweeney CB; Moran AG; Gruener JT; Strasser AM; Pospisil MJ; Saed MA; Green MJ ACS Appl Mater Interfaces; 2018 Aug; 10(32):27252-27259. PubMed ID: 30039965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]