These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28105748)

  • 1. Silicone-Based Organic-Inorganic Hybrid Aerogels and Xerogels.
    Shimizu T; Kanamori K; Nakanishi K
    Chemistry; 2017 Apr; 23(22):5176-5187. PubMed ID: 28105748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Interface Design in Graphene-Embedded Polymeric Silica Aerogel with Organic/Inorganic Hybridization.
    Karamikamkar S; Fashandi M; Naguib HE; Park CB
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26635-26648. PubMed ID: 32352754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polysiloxane Bonded Silica Aerogel with Enhanced Thermal Insulation and Strength.
    Wang W; Tong Z; Li R; Su D; Ji H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic solvents-free and ambient-pressure drying melamine formaldehyde resin aerogels with homogeneous structures, outstanding mechanical strength and flame retardancy.
    Wang T; Xu J; Zhan YJ; He L; Fu ZC; Deng JN; An WL; Zhao HB; Chen MJ
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):132811. PubMed ID: 38825282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels.
    Durães L; Ochoa M; Rocha N; Patrício R; Duarte N; Redondo V; Portugal A
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6828-34. PubMed ID: 22962830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction.
    Sakuma W; Yamasaki S; Fujisawa S; Kodama T; Shiomi J; Kanamori K; Saito T
    ACS Nano; 2021 Jan; 15(1):1436-1444. PubMed ID: 33405895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent Ethylene-Bridged Polymethylsiloxane Aerogels and Xerogels with Improved Bending Flexibility.
    Shimizu T; Kanamori K; Maeno A; Kaji H; Nakanishi K
    Langmuir; 2016 Dec; 32(50):13427-13434. PubMed ID: 27993023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.
    Zu G; Shimizu T; Kanamori K; Zhu Y; Maeno A; Kaji H; Shen J; Nakanishi K
    ACS Nano; 2018 Jan; 12(1):521-532. PubMed ID: 29309140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare-Earth Zirconate Ln
    Torres-Rodriguez J; Gutierrez-Cano V; Menelaou M; Kaštyl J; Cihlář J; Tkachenko S; González JA; Kalmár J; Fábián I; Lázár I; Čelko L; Kaiser J
    Inorg Chem; 2019 Nov; 58(21):14467-14477. PubMed ID: 31613608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An easy way to prepare monolithic inorganic oxide aerogels.
    Ren L; Cui S; Cao F; Guo Q
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10147-9. PubMed ID: 25056911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications.
    Maleki H; Whitmore L; Hüsing N
    J Mater Chem A Mater; 2018 Jul; 6(26):12598-12612. PubMed ID: 30713688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption.
    Wu K; Cao J; Qian Z; Luo Y; Niu B; Zhang Y; Long D
    J Colloid Interface Sci; 2022 Jul; 618():259-269. PubMed ID: 35339962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview.
    Meti P; Wang Q; Mahadik DB; Lee KY; Gong YD; Park HH
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic Ultralight Aerogel Monoliths of Imine-based Covalent Organic Frameworks.
    Martín-Illán JÁ; Rodríguez-San-Miguel D; Castillo O; Beobide G; Perez-Carvajal J; Imaz I; Maspoch D; Zamora F
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13969-13977. PubMed ID: 33724656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and Nanostructure of Chitosan/Nanocellulose Hybrid Aerogels.
    Zhang S; He J; Xiong S; Xiao Q; Xiao Y; Ding F; Ji H; Yang Z; Li Z
    Biomacromolecules; 2021 Aug; 22(8):3216-3222. PubMed ID: 34260205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose Xerogels With High Porosities and Large Specific Surface Areas.
    Yamasaki S; Sakuma W; Yasui H; Daicho K; Saito T; Fujisawa S; Isogai A; Kanamori K
    Front Chem; 2019; 7():316. PubMed ID: 31134187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications.
    Zuo L; Zhang Y; Zhang L; Miao YE; Fan W; Liu T
    Materials (Basel); 2015 Oct; 8(10):6806-6848. PubMed ID: 28793602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrosilylation Adducts to Produce Wide-Temperature Flexible Polysiloxane Aerogel under Ambient Temperature and Pressure Drying.
    Guo BF; Wang YJ; Qu ZH; Yang F; Qin YQ; Li Y; Zhang GD; Gao JF; Shi Y; Song P; Tang LC
    Small; 2024 Apr; 20(14):e2309272. PubMed ID: 37988706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic hybrid organic-inorganic aerogels.
    Wang X; Jana SC
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6423-9. PubMed ID: 23773123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.