These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28105794)
41. Metal-Organic Frameworks Derived Okra-like SnO Zhou X; Chen S; Yang J; Bai T; Ren Y; Tian H ACS Appl Mater Interfaces; 2017 Apr; 9(16):14309-14318. PubMed ID: 28394558 [TBL] [Abstract][Full Text] [Related]
42. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes. Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439 [TBL] [Abstract][Full Text] [Related]
43. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries. Zhou D; Song WL; Fan LZ ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195 [TBL] [Abstract][Full Text] [Related]
44. Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes. Kong J; Yee WA; Yang L; Wei Y; Phua SL; Ong HG; Ang JM; Li X; Lu X Chem Commun (Camb); 2012 Oct; 48(83):10316-8. PubMed ID: 22983398 [TBL] [Abstract][Full Text] [Related]
45. Biomimetic Synthesis of Polydopamine Coated ZnFe Yue H; Du T; Wang Q; Shi Z; Dong H; Cao Z; Qiao Y; Yin Y; Xing R; Yang S ACS Omega; 2018 Mar; 3(3):2699-2705. PubMed ID: 30023848 [TBL] [Abstract][Full Text] [Related]
46. Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries. Xie M; Sun X; George SM; Zhou C; Lian J; Zhou Y ACS Appl Mater Interfaces; 2015 Dec; 7(50):27735-42. PubMed ID: 26606590 [TBL] [Abstract][Full Text] [Related]
47. Microwave-Assisted Synthesis of SnO2@polypyrrole Nanotubes and Their Pyrolyzed Composite as Anode for Lithium-Ion Batteries. Du X; Yang T; Lin J; Feng T; Zhu J; Lu L; Xu Y; Wang J ACS Appl Mater Interfaces; 2016 Jun; 8(24):15598-606. PubMed ID: 27243786 [TBL] [Abstract][Full Text] [Related]
48. An Al Li N; Yi Z; Lin N; Qian Y Nanoscale; 2019 Sep; 11(36):16781-16787. PubMed ID: 31468041 [TBL] [Abstract][Full Text] [Related]
49. The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries. Hu R; Sun W; Liu H; Zeng M; Zhu M Nanoscale; 2013 Dec; 5(23):11971-9. PubMed ID: 24136654 [TBL] [Abstract][Full Text] [Related]
50. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Wei L; Chen C; Hou Z; Wei H Sci Rep; 2016 Jan; 6():19583. PubMed ID: 26786315 [TBL] [Abstract][Full Text] [Related]
51. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. Kravchyk K; Protesescu L; Bodnarchuk MI; Krumeich F; Yarema M; Walter M; Guntlin C; Kovalenko MV J Am Chem Soc; 2013 Mar; 135(11):4199-202. PubMed ID: 23414392 [TBL] [Abstract][Full Text] [Related]
52. Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO Pan D; Wan N; Ren Y; Zhang W; Lu X; Wang Y; Hu YS; Bai Y ACS Appl Mater Interfaces; 2017 Mar; 9(11):9747-9755. PubMed ID: 28240538 [TBL] [Abstract][Full Text] [Related]
53. One Step Synthesis of Uniform SnO Wei H; Xia Z; Xia D ACS Appl Mater Interfaces; 2017 Mar; 9(8):7169-7176. PubMed ID: 28165220 [TBL] [Abstract][Full Text] [Related]
54. N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries. Xie W; Li S; Wang S; Xue S; Liu Z; Jiang X; He D ACS Appl Mater Interfaces; 2014 Nov; 6(22):20334-9. PubMed ID: 25379677 [TBL] [Abstract][Full Text] [Related]
55. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. Dirican M; Lu Y; Ge Y; Yildiz O; Zhang X ACS Appl Mater Interfaces; 2015 Aug; 7(33):18387-96. PubMed ID: 26252051 [TBL] [Abstract][Full Text] [Related]
56. Phase evolution of tin nanocrystals in lithium ion batteries. Im HS; Cho YJ; Lim YR; Jung CS; Jang DM; Park J; Shojaei F; Kang HS ACS Nano; 2013 Dec; 7(12):11103-11. PubMed ID: 24195495 [TBL] [Abstract][Full Text] [Related]
57. AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. Sun S; Yin Y; Wan N; Wu Q; Zhang X; Pan D; Bai Y; Lu X ChemSusChem; 2015 Aug; 8(15):2544-50. PubMed ID: 26105748 [TBL] [Abstract][Full Text] [Related]
58. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes. Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038 [TBL] [Abstract][Full Text] [Related]
59. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Su D; Wang C; Ahn H; Wang G Phys Chem Chem Phys; 2013 Aug; 15(30):12543-50. PubMed ID: 23793542 [TBL] [Abstract][Full Text] [Related]
60. Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation. Nguyen CC; Yoon T; Seo DM; Guduru P; Lucht BL ACS Appl Mater Interfaces; 2016 May; 8(19):12211-20. PubMed ID: 27135935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]