These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 28105819)

  • 21. Chip-based separation devices coupled to mass spectrometry.
    Ohla S; Belder D
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):453-9. PubMed ID: 22673066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards single biomolecule handling and characterization by MEMS.
    Arata HF; Kumemura M; Sakaki N; Fujita H
    Anal Bioanal Chem; 2008 Aug; 391(7):2385-93. PubMed ID: 18363049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoscale Intelligent Imaging Based on Real-Time Analysis of Approach Curve by Scanning Electrochemical Microscopy.
    Balla RJ; Jantz DT; Kurapati N; Chen R; Leonard KC; Amemiya S
    Anal Chem; 2019 Aug; 91(15):10227-10235. PubMed ID: 31310104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Editorial overview: Large-scale recording technology: Scaling up neuroscience.
    Battaglia FP; Schnitzer MJ
    Curr Opin Neurobiol; 2015 Jun; 32():iv-vi. PubMed ID: 25959713
    [No Abstract]   [Full Text] [Related]  

  • 26. A micromachined capillary electrophoresis chip with fully integrated electrodes for separation and electrochemical detection.
    Wilke R; Büttgenbach S
    Biosens Bioelectron; 2003 Nov; 19(3):149-53. PubMed ID: 14611749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas.
    López-Marzo AM; Merkoçi A
    Lab Chip; 2016 Aug; 16(17):3150-76. PubMed ID: 27412239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions of electrical fields with fluids: laboratory-on-a-chip applications.
    Wu J
    IET Nanobiotechnol; 2008 Mar; 2(1):14-27. PubMed ID: 18298196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection.
    Wang J; Pumera M; Chatrathi MP; Escarpa A; Konrad R; Griebel A; Dörner W; Löwe H
    Electrophoresis; 2002 Feb; 23(4):596-601. PubMed ID: 11870771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualization of local phosphatidylcholine synthesis within hippocampal neurons using a compartmentalized culture system and imaging mass spectrometry.
    Sugiyama E; Yao I; Setou M
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1048-1054. PubMed ID: 29162450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotics and neuroscience. Editorial.
    Prattichizzo D; Rossi S
    Brain Res Bull; 2008 Apr; 75(6):715-6. PubMed ID: 18394516
    [No Abstract]   [Full Text] [Related]  

  • 32. Digital devices and continuous telemetry: opportunities for aligning psychiatry and neuroscience.
    Baker JT; Germine LT; Ressler KJ; Rauch SL; Carlezon WA
    Neuropsychopharmacology; 2018 Dec; 43(13):2499-2503. PubMed ID: 30120409
    [No Abstract]   [Full Text] [Related]  

  • 33. Microfabricated reference electrodes and their biosensing applications.
    Shinwari MW; Zhitomirsky D; Deen IA; Selvaganapathy PR; Deen MJ; Landheer D
    Sensors (Basel); 2010; 10(3):1679-715. PubMed ID: 22294894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical lab on a chip for high-throughput analysis of anticancer drugs efficiency.
    Popovtzer R; Neufeld T; Popovtzer A; Rivkin I; Margalit R; Engel D; Nudelman A; Rephaeli A; Rishpon J; Shacham-Diamand Y
    Nanomedicine; 2008 Jun; 4(2):121-6. PubMed ID: 18482873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol.
    Katseli V; Economou A; Kokkinos C
    Talanta; 2020 Feb; 208():120388. PubMed ID: 31816700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical imaging of biological systems with the scanning electrochemical microscope.
    Gyurcsányi RE; Jágerszki G; Kiss G; Tóth K
    Bioelectrochemistry; 2004 Jun; 63(1-2):207-15. PubMed ID: 15110274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shifting the paradigm: new approaches for characterizing and classifying neurons.
    Bernard A; Sorensen SA; Lein ES
    Curr Opin Neurobiol; 2009 Oct; 19(5):530-6. PubMed ID: 19896835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate.
    Pang S; Cui X; DeModena J; Wang YM; Sternberg P; Yang C
    Lab Chip; 2010 Feb; 10(4):411-4. PubMed ID: 20126679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioimaging with micro/nanoelectrode systems.
    Matsue T
    Anal Sci; 2013; 29(2):171-9. PubMed ID: 23400281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical DNA sensors.
    Drummond TG; Hill MG; Barton JK
    Nat Biotechnol; 2003 Oct; 21(10):1192-9. PubMed ID: 14520405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.