These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28105856)
1. Evaluation of in silico tools to predict the skin sensitization potential of chemicals. Verheyen GR; Braeken E; Van Deun K; Van Miert S SAR QSAR Environ Res; 2017 Jan; 28(1):59-73. PubMed ID: 28105856 [TBL] [Abstract][Full Text] [Related]
2. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance. Teubner W; Mehling A; Schuster PX; Guth K; Worth A; Burton J; van Ravenzwaay B; Landsiedel R Regul Toxicol Pharmacol; 2013 Dec; 67(3):468-85. PubMed ID: 24090701 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the global performance of eight in silico skin sensitization models using human data. Golden E; Macmillan DS; Dameron G; Kern P; Hartung T; Maertens A ALTEX; 2021; 38(1):33-48. PubMed ID: 32388570 [TBL] [Abstract][Full Text] [Related]
4. A review of substances found positive in 1 of 3 in vitro tests for skin sensitization. Kolle SN; Natsch A; Gerberick GF; Landsiedel R Regul Toxicol Pharmacol; 2019 Aug; 106():352-368. PubMed ID: 31112722 [TBL] [Abstract][Full Text] [Related]
5. The Good, The Bad, and The Perplexing: Structural Alerts and Read-Across for Predicting Skin Sensitization Using Human Data. Golden E; Ukaegbu DC; Ranslow P; Brown RH; Hartung T; Maertens A Chem Res Toxicol; 2023 May; 36(5):734-746. PubMed ID: 37126467 [TBL] [Abstract][Full Text] [Related]
6. Further evaluation of quantitative structure--activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Patlewicz GY; Basketter DA; Pease CK; Wilson K; Wright ZM; Roberts DW; Bernard G; Arnau EG; Lepoittevin JP Contact Dermatitis; 2004 Feb; 50(2):91-7. PubMed ID: 15128320 [TBL] [Abstract][Full Text] [Related]
7. Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals. Braga RC; Alves VM; Muratov EN; Strickland J; Kleinstreuer N; Trospsha A; Andrade CH J Chem Inf Model; 2017 May; 57(5):1013-1017. PubMed ID: 28459556 [TBL] [Abstract][Full Text] [Related]
8. Ahuja V; Adiga Perdur G; Aj Z; Krishnappa M; Kandarova H Altern Lab Anim; 2024 Jul; 52(4):195-204. PubMed ID: 38910363 [TBL] [Abstract][Full Text] [Related]
9. Evaluation and improvement of QSAR predictions of skin sensitization for pesticides. Braeuning C; Braeuning A; Mielke H; Holzwarth A; Peiser M SAR QSAR Environ Res; 2018 Oct; 29(10):823-846. PubMed ID: 30251555 [TBL] [Abstract][Full Text] [Related]
10. Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows. Langton K; Patlewicz GY; Long A; Marchant CA; Basketter DA Contact Dermatitis; 2006 Dec; 55(6):342-7. PubMed ID: 17101009 [TBL] [Abstract][Full Text] [Related]
11. Performance of In Silico Models for Mutagenicity Prediction of Food Contact Materials. Van Bossuyt M; Van Hoeck E; Raitano G; Vanhaecke T; Benfenati E; Mertens B; Rogiers V Toxicol Sci; 2018 Jun; 163(2):632-638. PubMed ID: 29579255 [TBL] [Abstract][Full Text] [Related]
12. Validation and subsequent development of the DEREK skin sensitization rulebase by analysis of the BgVV list of contact allergens. Barratt MD; Langowski JJ J Chem Inf Comput Sci; 1999; 39(2):294-8. PubMed ID: 10192944 [TBL] [Abstract][Full Text] [Related]
14. Predicting skin sensitisation using a decision tree integrated testing strategy with an in silico model and in chemico/in vitro assays. Macmillan DS; Canipa SJ; Chilton ML; Williams RV; Barber CG Regul Toxicol Pharmacol; 2016 Apr; 76():30-8. PubMed ID: 26796566 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of in silico models for the identification of respiratory sensitizers. Dik S; Ezendam J; Cunningham AR; Carrasquer CA; van Loveren H; Rorije E Toxicol Sci; 2014 Dec; 142(2):385-94. PubMed ID: 25239631 [TBL] [Abstract][Full Text] [Related]
16. Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition. Enoch SJ; Cronin MT; Schultz TW; Madden JC Chem Res Toxicol; 2008 Feb; 21(2):513-20. PubMed ID: 18189367 [TBL] [Abstract][Full Text] [Related]
17. In silico risk assessment for skin sensitization using artificial neural network analysis. Tsujita-Inoue K; Atobe T; Hirota M; Ashikaga T; Kouzuki H J Toxicol Sci; 2015 Apr; 40(2):193-209. PubMed ID: 25786524 [TBL] [Abstract][Full Text] [Related]
18. Structure-activity models for contact sensitization. Fedorowicz A; Singh H; Soderholm S; Demchuk E Chem Res Toxicol; 2005 Jun; 18(6):954-69. PubMed ID: 15962930 [TBL] [Abstract][Full Text] [Related]
19. A comparison of reactivity schemes for the prediction skin sensitization potential. Patlewicz G; Roberts DW; Uriarte E Chem Res Toxicol; 2008 Feb; 21(2):521-41. PubMed ID: 18189364 [TBL] [Abstract][Full Text] [Related]
20. Comparison of seven in silico tools for evaluating of daphnia and fish acute toxicity: case study on Chinese Priority Controlled Chemicals and new chemicals. Zhou L; Fan D; Yin W; Gu W; Wang Z; Liu J; Xu Y; Shi L; Liu M; Ji G BMC Bioinformatics; 2021 Mar; 22(1):151. PubMed ID: 33761866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]