BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28105856)

  • 1. Evaluation of in silico tools to predict the skin sensitization potential of chemicals.
    Verheyen GR; Braeken E; Van Deun K; Van Miert S
    SAR QSAR Environ Res; 2017 Jan; 28(1):59-73. PubMed ID: 28105856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance.
    Teubner W; Mehling A; Schuster PX; Guth K; Worth A; Burton J; van Ravenzwaay B; Landsiedel R
    Regul Toxicol Pharmacol; 2013 Dec; 67(3):468-85. PubMed ID: 24090701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the global performance of eight in silico skin sensitization models using human data.
    Golden E; Macmillan DS; Dameron G; Kern P; Hartung T; Maertens A
    ALTEX; 2021; 38(1):33-48. PubMed ID: 32388570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of substances found positive in 1 of 3 in vitro tests for skin sensitization.
    Kolle SN; Natsch A; Gerberick GF; Landsiedel R
    Regul Toxicol Pharmacol; 2019 Aug; 106():352-368. PubMed ID: 31112722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Good, The Bad, and The Perplexing: Structural Alerts and Read-Across for Predicting Skin Sensitization Using Human Data.
    Golden E; Ukaegbu DC; Ranslow P; Brown RH; Hartung T; Maertens A
    Chem Res Toxicol; 2023 May; 36(5):734-746. PubMed ID: 37126467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further evaluation of quantitative structure--activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens.
    Patlewicz GY; Basketter DA; Pease CK; Wilson K; Wright ZM; Roberts DW; Bernard G; Arnau EG; Lepoittevin JP
    Contact Dermatitis; 2004 Feb; 50(2):91-7. PubMed ID: 15128320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals.
    Braga RC; Alves VM; Muratov EN; Strickland J; Kleinstreuer N; Trospsha A; Andrade CH
    J Chem Inf Model; 2017 May; 57(5):1013-1017. PubMed ID: 28459556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation and improvement of QSAR predictions of skin sensitization for pesticides.
    Braeuning C; Braeuning A; Mielke H; Holzwarth A; Peiser M
    SAR QSAR Environ Res; 2018 Oct; 29(10):823-846. PubMed ID: 30251555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows.
    Langton K; Patlewicz GY; Long A; Marchant CA; Basketter DA
    Contact Dermatitis; 2006 Dec; 55(6):342-7. PubMed ID: 17101009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of In Silico Models for Mutagenicity Prediction of Food Contact Materials.
    Van Bossuyt M; Van Hoeck E; Raitano G; Vanhaecke T; Benfenati E; Mertens B; Rogiers V
    Toxicol Sci; 2018 Jun; 163(2):632-638. PubMed ID: 29579255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and subsequent development of the DEREK skin sensitization rulebase by analysis of the BgVV list of contact allergens.
    Barratt MD; Langowski JJ
    J Chem Inf Comput Sci; 1999; 39(2):294-8. PubMed ID: 10192944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Phototoxicity Prediction of Drugs and Chemicals by using Derek Nexus and QSAR Toolbox.
    Ahuja V; Adiga Perdur G; Aj Z; Krishnappa M; Kandarova H
    Altern Lab Anim; 2024 Jun; ():2611929241256040. PubMed ID: 38910363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational approaches for skin sensitization prediction.
    Wilm A; Kühnl J; Kirchmair J
    Crit Rev Toxicol; 2018 Oct; 48(9):738-760. PubMed ID: 30488745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting skin sensitisation using a decision tree integrated testing strategy with an in silico model and in chemico/in vitro assays.
    Macmillan DS; Canipa SJ; Chilton ML; Williams RV; Barber CG
    Regul Toxicol Pharmacol; 2016 Apr; 76():30-8. PubMed ID: 26796566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of in silico models for the identification of respiratory sensitizers.
    Dik S; Ezendam J; Cunningham AR; Carrasquer CA; van Loveren H; Rorije E
    Toxicol Sci; 2014 Dec; 142(2):385-94. PubMed ID: 25239631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition.
    Enoch SJ; Cronin MT; Schultz TW; Madden JC
    Chem Res Toxicol; 2008 Feb; 21(2):513-20. PubMed ID: 18189367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico risk assessment for skin sensitization using artificial neural network analysis.
    Tsujita-Inoue K; Atobe T; Hirota M; Ashikaga T; Kouzuki H
    J Toxicol Sci; 2015 Apr; 40(2):193-209. PubMed ID: 25786524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity models for contact sensitization.
    Fedorowicz A; Singh H; Soderholm S; Demchuk E
    Chem Res Toxicol; 2005 Jun; 18(6):954-69. PubMed ID: 15962930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of reactivity schemes for the prediction skin sensitization potential.
    Patlewicz G; Roberts DW; Uriarte E
    Chem Res Toxicol; 2008 Feb; 21(2):521-41. PubMed ID: 18189364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of seven in silico tools for evaluating of daphnia and fish acute toxicity: case study on Chinese Priority Controlled Chemicals and new chemicals.
    Zhou L; Fan D; Yin W; Gu W; Wang Z; Liu J; Xu Y; Shi L; Liu M; Ji G
    BMC Bioinformatics; 2021 Mar; 22(1):151. PubMed ID: 33761866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.