BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28105891)

  • 1. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.
    Yang Q; Li J; Xu H; Long S; Li X
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):459-469. PubMed ID: 28105891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture.
    Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J
    Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.
    Jang J; Seol YJ; Kim HJ; Kundu J; Kim SW; Cho DW
    J Mech Behav Biomed Mater; 2014 Sep; 37():69-77. PubMed ID: 24880568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels.
    Han Y; Zeng Q; Li H; Chang J
    Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly (L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility.
    Chu J; Zeng S; Gao L; Groth T; Li Z; Kong J; Zhao M; Li L
    Int J Artif Organs; 2016 Oct; 39(8):435-443. PubMed ID: 27646631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
    Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X
    Adv Mater; 2015 Jul; 27(27):4035-40. PubMed ID: 26033288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stretchable HA/SA hydrogels for tissue engineering.
    Zhu C; Yang R; Hua X; Chen H; Xu J; Wu R; Cen L
    J Biomater Sci Polym Ed; 2018 Apr; 29(5):543-561. PubMed ID: 29316854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of keratin/alginate scaffold using RSM and its characterization for tissue engineering.
    Gupta P; Nayak KK
    Int J Biol Macromol; 2016 Apr; 85():141-9. PubMed ID: 26691383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate.
    Omidian H; Rocca JG; Park K
    Macromol Biosci; 2006 Sep; 6(9):703-10. PubMed ID: 16967483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
    Shi P; Laude A; Yeong WY
    J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High strength and low friction of a PAA-alginate-silica hydrogel as potential material for artificial soft tissues.
    Lin HR; Ling MH; Lin YJ
    J Biomater Sci Polym Ed; 2009; 20(5-6):637-52. PubMed ID: 19323881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ionic crosslinkers (Ca
    Sarker M; Izadifar M; Schreyer D; Chen X
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1126-1154. PubMed ID: 29376775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.
    Liu M; Dai L; Shi H; Xiong S; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering.
    Zheng A; Cao L; Liu Y; Wu J; Zeng D; Hu L; Zhang X; Jiang X
    Carbohydr Polym; 2018 Nov; 199():244-255. PubMed ID: 30143127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.