These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 28105911)

  • 1. Integrating gene set analysis and nonlinear predictive modeling of disease phenotypes using a Bayesian multitask formulation.
    Gönen M
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):0. PubMed ID: 28105911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning.
    Gönen M; Margolin AA
    Bioinformatics; 2014 Sep; 30(17):i556-63. PubMed ID: 25161247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets.
    Rahimi A; Gönen M
    Bioinformatics; 2018 Jul; 34(13):i412-i421. PubMed ID: 29949993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass kernel-imbedded Gaussian processes for microarray data analysis.
    Zhao X; Cheung LW
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1041-53. PubMed ID: 20805625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization.
    Cawley GC; Talbot NL
    Bioinformatics; 2006 Oct; 22(19):2348-55. PubMed ID: 16844704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Large-Scale Multitask Learning Network for Gene Expression Inference.
    Dizaji KG; Chen W; Huang H
    J Comput Biol; 2021 May; 28(5):485-500. PubMed ID: 34014778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single sample scoring of molecular phenotypes.
    Foroutan M; Bhuva DD; Lyu R; Horan K; Cursons J; Davis MJ
    BMC Bioinformatics; 2018 Nov; 19(1):404. PubMed ID: 30400809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring combinations of dimensionality reduction, transfer learning, and regularization methods for predicting binary phenotypes with transcriptomic data.
    Oshternian SR; Loipfinger S; Bhattacharya A; Fehrmann RSN
    BMC Bioinformatics; 2024 Apr; 25(1):167. PubMed ID: 38671342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Gene Set Annotations Using Robust Trace-Norm Multitask Learning.
    Liang X; Zhu L; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):1016-1021. PubMed ID: 28391202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene selection for microarray gene expression classification using Bayesian Lasso quantile regression.
    Algamal ZY; Alhamzawi R; Mohammad Ali HT
    Comput Biol Med; 2018 Jun; 97():145-152. PubMed ID: 29729489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.
    Mezlini AM; Goldenberg A
    PLoS Comput Biol; 2017 Oct; 13(10):e1005580. PubMed ID: 29023450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtype prediction in pediatric acute myeloid leukemia: classification using differential network rank conservation revisited.
    Obulkasim A; Fornerod M; Zwaan MC; Reinhardt D; van den Heuvel-Eibrink MM
    BMC Bioinformatics; 2015 Sep; 16():305. PubMed ID: 26399969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tree-like Bayesian structure learning algorithm for small-sample datasets from complex biological model systems.
    Yin W; Garimalla S; Moreno A; Galinski MR; Styczynski MP
    BMC Syst Biol; 2015 Aug; 9():49. PubMed ID: 26310492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects.
    Dundar M; Akova F; Yerebakan HZ; Rajwa B
    BMC Bioinformatics; 2014 Sep; 15(1):314. PubMed ID: 25248977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature selection of gene expression data for Cancer classification using double RBF-kernels.
    Liu S; Xu C; Zhang Y; Liu J; Yu B; Liu X; Dehmer M
    BMC Bioinformatics; 2018 Oct; 19(1):396. PubMed ID: 30373514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
    Lai Y; Zhang F; Nayak TK; Modarres R; Lee NH; McCaffrey TA
    BMC Genomics; 2017 Jan; 18(Suppl 1):1050. PubMed ID: 28198679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of set-level techniques in predictive classification of gene expression samples.
    Holec M; Kléma J; Zelezný F; Tolar J
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S15. PubMed ID: 22759420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining gene signatures: a Bayesian approach.
    Djebbari A; Labbe A
    BMC Bioinformatics; 2009 Dec; 10():410. PubMed ID: 20003289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.