These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28105940)

  • 1. Integrated single cell data analysis reveals cell specific networks and novel coactivation markers.
    Ghazanfar S; Bisogni AJ; Ormerod JT; Lin DM; Yang JY
    BMC Syst Biol; 2016 Dec; 10(Suppl 5):127. PubMed ID: 28105940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis.
    Gao Y; Wang F; Eisinger BE; Kelnhofer LE; Jobe EM; Zhao X
    Cereb Cortex; 2017 Mar; 27(3):2064-2077. PubMed ID: 26989163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating measures of association for single-cell transcriptomics.
    Skinnider MA; Squair JW; Foster LJ
    Nat Methods; 2019 May; 16(5):381-386. PubMed ID: 30962620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyse multiple disease subtypes and build associated gene networks using genome-wide expression profiles.
    Aibar S; Fontanillo C; Droste C; Roson-Burgo B; Campos-Laborie FJ; Hernandez-Rivas JM; De Las Rivas J
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 26040557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis.
    Hanchate NK; Kondoh K; Lu Z; Kuang D; Ye X; Qiu X; Pachter L; Trapnell C; Buck LB
    Science; 2015 Dec; 350(6265):1251-5. PubMed ID: 26541607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Networks Predict Neuronal Transdifferentiation.
    Ainsworth RI; Ai R; Ding B; Li N; Zhang K; Wang W
    G3 (Bethesda); 2018 Jul; 8(7):2501-2511. PubMed ID: 29848620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor.
    Crow M; Paul A; Ballouz S; Huang ZJ; Gillis J
    Nat Commun; 2018 Feb; 9(1):884. PubMed ID: 29491377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Cell Type Specific Gene Expression and Co-expression Network Architectures.
    McKenzie AT; Wang M; Hauberg ME; Fullard JF; Kozlenkov A; Keenan A; Hurd YL; Dracheva S; Casaccia P; Roussos P; Zhang B
    Sci Rep; 2018 Jun; 8(1):8868. PubMed ID: 29892006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SMaSH: a scalable, general marker gene identification framework for single-cell RNA-sequencing.
    Nelson ME; Riva SG; Cvejic A
    BMC Bioinformatics; 2022 Aug; 23(1):328. PubMed ID: 35941549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability.
    Park J; Ogunnaike B; Schwaber J; Vadigepalli R
    Prog Biophys Mol Biol; 2015 Jan; 117(1):87-98. PubMed ID: 25433230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying progressive gene network perturbation from single-cell RNA-seq data.
    Mukherjee S; Carignano A; Seelig G; Lee SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5034-5040. PubMed ID: 30441472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq.
    Saraiva LR; Ibarra-Soria X; Khan M; Omura M; Scialdone A; Mombaerts P; Marioni JC; Logan DW
    Sci Rep; 2015 Dec; 5():18178. PubMed ID: 26670777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell network biology for resolving cellular heterogeneity in human diseases.
    Cha J; Lee I
    Exp Mol Med; 2020 Nov; 52(11):1798-1808. PubMed ID: 33244151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes.
    Lopes KP; Campos-Laborie FJ; Vialle RA; Ortega JM; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):725. PubMed ID: 27801289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.
    Jambusaria A; Klomp J; Hong Z; Rafii S; Dai Y; Malik AB; Rehman J
    BMC Bioinformatics; 2018 Jun; 19(1):217. PubMed ID: 29940845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of functional modules reflecting transcriptome transition during human neuron maturation.
    He Z; Yu Q
    BMC Genomics; 2018 Apr; 19(1):262. PubMed ID: 29665773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.