These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1077 related articles for article (PubMed ID: 28105945)
1. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
2. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study. Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722 [TBL] [Abstract][Full Text] [Related]
3. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259 [TBL] [Abstract][Full Text] [Related]
4. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
5. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685 [TBL] [Abstract][Full Text] [Related]
6. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review. Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023 [TBL] [Abstract][Full Text] [Related]
7. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Abdulhasan ZM; Scally AJ; Buckley JG Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391 [TBL] [Abstract][Full Text] [Related]
8. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP; Klute GK; Neptune RR Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999 [TBL] [Abstract][Full Text] [Related]
9. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms. Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM Clin Biomech (Bristol); 2018 Jun; 55():65-72. PubMed ID: 29698851 [TBL] [Abstract][Full Text] [Related]
10. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis. Ingraham KA; Fey NP; Simon AM; Hargrove LJ PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889 [TBL] [Abstract][Full Text] [Related]
11. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial. Jayaraman C; Mummidisetty CK; Albert MV; Lipschutz R; Hoppe-Ludwig S; Mathur G; Jayaraman A J Neuroeng Rehabil; 2021 May; 18(1):88. PubMed ID: 34034753 [TBL] [Abstract][Full Text] [Related]
12. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms. Struchkov V; Buckley JG Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894 [TBL] [Abstract][Full Text] [Related]
13. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees. Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984 [TBL] [Abstract][Full Text] [Related]
14. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps. Lura DJ; Wernke MM; Carey SL; Kahle JT; Miro RM; Highsmith MJ Clin Biomech (Bristol); 2015 Feb; 30(2):175-81. PubMed ID: 25537443 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519 [TBL] [Abstract][Full Text] [Related]
16. Uphill and downhill walking in unilateral lower limb amputees. Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Fuenzalida Squella SA; Kannenberg A; Brandão Benetti  Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574 [TBL] [Abstract][Full Text] [Related]
18. Altered kinetic strategy for the control of swing limb elevation over obstacles in unilateral below-knee amputee gait. Hill SW; Patla AE; Ishac MG; Adkin AL; Supan TJ; Barth DG J Biomech; 1999 May; 32(5):545-9. PubMed ID: 10327009 [TBL] [Abstract][Full Text] [Related]
19. Designs and performance of microprocessor-controlled knee joints. Thiele J; Westebbe B; Bellmann M; Kraft M Biomed Tech (Berl); 2014 Feb; 59(1):65-77. PubMed ID: 24176961 [TBL] [Abstract][Full Text] [Related]
20. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper. Zhang Y; Cao W; Yu H; Meng Q; Chen W Technol Health Care; 2020; 28(1):93-97. PubMed ID: 31476188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]