These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28105948)

  • 1. Active lower limb prosthetics: a systematic review of design issues and solutions.
    Windrich M; Grimmer M; Christ O; Rinderknecht S; Beckerle P
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):140. PubMed ID: 28105948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Powered Ankle-Foot Prostheses.
    Chumacero E; Masud AA; Isik D; Shen CL; Chyu MC
    Crit Rev Biomed Eng; 2018; 46(2):93-108. PubMed ID: 30055526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650352. PubMed ID: 24187171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation.
    Cherelle P; Grosu V; Cestari M; Vanderborght B; Lefeber D
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):145. PubMed ID: 28105954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized design of ankle-foot prosthesis based on computer modeling of amputee locomotion.
    Gharini M; Mohammadi Moghaddam M; Farahmand F
    Assist Technol; 2020; 32(2):100-108. PubMed ID: 29944462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses.
    Russell Esposito E; Wilken JM
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1186-92. PubMed ID: 25440576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis.
    Tkach DC; Lipschutz RD; Finucane SB; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650499. PubMed ID: 24187314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of mechanical energy profiles of passive and active below-knee prostheses: a case study.
    Takahashi KZ; Horne JR; Stanhope SJ
    Prosthet Orthot Int; 2015 Apr; 39(2):150-6. PubMed ID: 24418933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-prosthesis coordination: A preliminary study exploring coordination with a powered ankle-foot prosthesis.
    Fylstra BL; Lee IC; Huang S; Brandt A; Lewek MD; Huang HH
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105171. PubMed ID: 32932017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A powered prosthetic intervention for bilateral transfemoral amputees.
    Lawson BE; Ruhe B; Shultz A; Goldfarb M
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1042-50. PubMed ID: 25014950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the impedance of above-knee powered prostheses need to be adjusted for load-carrying conditions?
    Brandt A; Ming Liu ; Huang HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5075-5078. PubMed ID: 28269409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Running with a powered knee and ankle prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):403-12. PubMed ID: 25020138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-inspired design and validation of the Efficient Lockable Spring Ankle (ELSA) prosthesis.
    Heremans F; Vijayakumar S; Bouri M; Dehez B; Ronsse R
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():411-416. PubMed ID: 31374664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an energy efficient transfemoral prosthesis using lockable parallel springs and electrical energy transfer.
    Heremans F; Ronsse R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1305-1312. PubMed ID: 28814001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intent recognition in a powered lower limb prosthesis using time history information.
    Young AJ; Simon AM; Fey NP; Hargrove LJ
    Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.