These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 28105948)

  • 21. A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint.
    Tran M; Gabert L; Hood S; Lenzi T
    Sci Robot; 2022 Nov; 7(72):eabo3996. PubMed ID: 36417500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A prosthesis-specific multi-link segment model of lower-limb amputee sprinting.
    Rigney SM; Simmons A; Kark L
    J Biomech; 2016 Oct; 49(14):3185-3193. PubMed ID: 27544619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis.
    Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Increasing Assistance From a Powered Prosthesis on Weight-Bearing Symmetry, Effort, and Speed During Stand-Up in Individuals With Above-Knee Amputation.
    Hunt GR; Hood S; Gabert L; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():11-21. PubMed ID: 36240032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs.
    Handford ML; Srinivasan M
    Sci Rep; 2016 Feb; 6():19983. PubMed ID: 26857747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early evaluation of a powered transfemoral prosthesis with force-modulated impedance control and energy regeneration.
    Warner H; Khalaf P; Richter H; Simon D; Hardin E; van den Bogert AJ
    Med Eng Phys; 2022 Feb; 100():103744. PubMed ID: 35144731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions Between Transfemoral Amputees and a Powered Knee Prosthesis During Load Carriage.
    Brandt A; Wen Y; Liu M; Stallings J; Huang HH
    Sci Rep; 2017 Nov; 7(1):14480. PubMed ID: 29101394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.
    Wang J; Kannape OA; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650391. PubMed ID: 24187210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards active lower limb prosthetic systems: design issues and solutions.
    Christ O; Beckerle P
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):139. PubMed ID: 28105949
    [No Abstract]   [Full Text] [Related]  

  • 34. Obtaining Natural Sit-to-Stand Motion with a Biomimetic Controller for Powered Knee Prostheses.
    Wu M; Haque MR; Shen X
    J Healthc Eng; 2017; 2017():3850351. PubMed ID: 29075428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Feb; 12(2):026002. PubMed ID: 28059775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes.
    Simon AM; Fey NP; Finucane SB; Lipschutz RD; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650371. PubMed ID: 24187190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
    Rohani F; Richter H; van den Bogert AJ
    PLoS One; 2017; 12(11):e0188266. PubMed ID: 29149213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
    Zhang F; Liu M; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):64-72. PubMed ID: 25486645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.