These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 28105948)

  • 41. A powered prosthetic ankle joint for walking and running.
    Grimmer M; Holgate M; Holgate R; Boehler A; Ward J; Hollander K; Sugar T; Seyfarth A
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):141. PubMed ID: 28105953
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of the contralateral limb in below-knee amputee gait.
    Hurley GR; McKenney R; Robinson M; Zadravec M; Pierrynowski MR
    Prosthet Orthot Int; 1990 Apr; 14(1):33-42. PubMed ID: 2192355
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Knee mechanisms for through-knee prostheses.
    Oberg K
    Prosthet Orthot Int; 1983 Aug; 7(2):107-12. PubMed ID: 6622228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolics of stair ascent with a powered transfemoral prosthesis.
    Ledoux ED; Lawson BE; Shultz AH; Bartlett HL; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5307-10. PubMed ID: 26737489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A robust design procedure for improvement of quality of lower-limb prosthesis.
    Chen NZ; Lee WC; Zhang M
    Biomed Mater Eng; 2006; 16(5):309-18. PubMed ID: 17075166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Standing stability enhancement with an intelligent powered transfemoral prosthesis.
    Lawson BE; Varol HA; Goldfarb M
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2617-24. PubMed ID: 21693411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transtibial prosthesis suspension systems: systematic review of literature.
    Gholizadeh H; Abu Osman NA; Eshraghi A; Ali S; Razak NA
    Clin Biomech (Bristol, Avon); 2014 Jan; 29(1):87-97. PubMed ID: 24315710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Affordable Insole-Sensor-Based Trans-Femoral Prosthesis for Normal Gait.
    Pandit S; Godiyal AK; Vimal AK; Singh U; Joshi D; Kalyanasundaram D
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495495
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The influence of the C-leg knee-shin system from the Otto Bock Company in the care of above-knee amputees. A clinical-biomechanical study to define indications].
    Wetz HH; Hafkemeyer U; Drerup B
    Orthopade; 2005 Apr; 34(4):298, 300-314, 316-9. PubMed ID: 15812621
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Review of the actuators of active knee prostheses and their target design outputs for activities of daily living.
    Pieringer DS; Grimmer M; Russold MF; Riener R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1246-1253. PubMed ID: 28813992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A pneumatically-actuated lower-limb orthosis.
    Wu SK; Jordan M; Shen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8126-9. PubMed ID: 22256228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities.
    Biddiss E; Chau T
    Med Eng Phys; 2008 May; 30(4):403-18. PubMed ID: 17632030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.
    Sun Y; Ge W; Zheng J; Dong D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1031-8. PubMed ID: 25675463
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee.
    Martinez-Villalpando EC; Mooney L; Elliott G; Herr H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8519-22. PubMed ID: 22256326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design Optimization in Lower Limb Prostheses: A Review.
    Price MA; Beckerle P; Sup FC
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1574-1588. PubMed ID: 31283485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of Smooth Gait Transitioning for Active Lower Limb Prosthetics.
    Boudali AM; Sinclair PJ; Manchester IR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2424-2429. PubMed ID: 31946388
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct Myoelectric Control Modifies Lower Limb Functional Connectivity: A Case Study.
    Liu W; Fleming A; Lee IC; Huang HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6573-6576. PubMed ID: 34892615
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active plantar-flexion above-knee prosthesis: concept and preliminary design.
    Rigas C
    Prosthet Orthot Int; 1985 Dec; 9(3):141-4. PubMed ID: 4088842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.