These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28106402)

  • 1. Molecular Orbital Rule for Quantum Interference in Weakly Coupled Dimers: Low-Energy Giant Conductivity Switching Induced by Orbital Level Crossing.
    Nozaki D; Lücke A; Schmidt WG
    J Phys Chem Lett; 2017 Feb; 8(4):727-732. PubMed ID: 28106402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Interference, Graphs, Walks, and Polynomials.
    Tsuji Y; Estrada E; Movassagh R; Hoffmann R
    Chem Rev; 2018 May; 118(10):4887-4911. PubMed ID: 29630345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontier orbital control of molecular conductance and its switching.
    Tsuji Y; Hoffmann R
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4093-7. PubMed ID: 24623549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum interference effects elucidate triplet-pair formation dynamics in intramolecular singlet-fission molecules.
    Parenti KR; Chesler R; He G; Bhattacharyya P; Xiao B; Huang H; Malinowski D; Zhang J; Yin X; Shukla A; Mazumdar S; Sfeir MY; Campos LM
    Nat Chem; 2023 Mar; 15(3):339-346. PubMed ID: 36585444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reassessing destructive quantum interference in azulene-based devices.
    Saraiva-Souza A; Smeu M; Guo H
    Phys Chem Chem Phys; 2020 Feb; 22(6):3653-3660. PubMed ID: 32002522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An orbital rule for electron transport in molecules.
    Yoshizawa K
    Acc Chem Res; 2012 Sep; 45(9):1612-21. PubMed ID: 22698647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules.
    Markussen T; Stadler R; Thygesen KS
    Phys Chem Chem Phys; 2011 Aug; 13(32):14311-7. PubMed ID: 21709924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Magic Ratio Rule for Beginners: A Chemist's Guide to Quantum Interference in Molecules.
    Lambert CJ; Liu SX
    Chemistry; 2018 Mar; 24(17):4193-4201. PubMed ID: 29120523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules.
    Chen CC; Kuo DM; Chang YC
    Phys Chem Chem Phys; 2015 Jul; 17(29):19386-93. PubMed ID: 26144845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing Quantum Interference in Molecular Junctions.
    Gunasekaran S; Greenwald JE; Venkataraman L
    Nano Lett; 2020 Apr; 20(4):2843-2848. PubMed ID: 32142291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroatom Effects on Quantum Interference in Molecular Junctions: Modulating Antiresonances by Molecular Design.
    O'Driscoll LJ; Sangtarash S; Xu W; Daaoub A; Hong W; Sadeghi H; Bryce MR
    J Phys Chem C Nanomater Interfaces; 2021 Aug; 125(31):17385-17391. PubMed ID: 34476041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular design of electron transport with orbital rule: toward conductance-decay free molecular junctions.
    Tada T; Yoshizawa K
    Phys Chem Chem Phys; 2015 Dec; 17(48):32099-110. PubMed ID: 26584208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic transportation through asymmetrically substituted oligo(phenylene ethynylene)s: studied by first principles nonequilibrium Green's function formalism.
    Yin X; Liu H; Zhao J
    J Chem Phys; 2006 Sep; 125(9):094711. PubMed ID: 16965109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating Quantum Interference between σ and π Orbitals in Single-Molecule Junctions via Chemical Substitution and Environmental Control.
    Skipper HE; Lawson B; Pan X; Degtiareva V; Kamenetska M
    ACS Nano; 2023 Aug; 17(16):16107-16114. PubMed ID: 37540771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode effects on the observability of destructive quantum interference in single-molecule junctions.
    Sengul O; Valli A; Stadler R
    Nanoscale; 2021 Oct; 13(40):17011-17021. PubMed ID: 34617536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of molecular conductance using a modular approach.
    Hsu LY; Rabitz H
    J Chem Phys; 2016 Dec; 145(23):234702. PubMed ID: 28010083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How substituents tune quantum interference in meta-OPE3 molecular junctions to control thermoelectric transport.
    Yan S; Luan Y; Xu H; Fan H; Martin L; Gupta AK; Linke H; Meyhofer E; Reddy P; Pauly F; Wärnmark K
    Nanoscale; 2024 Jul; 16(29):13905-13914. PubMed ID: 38973506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turning the Tap: Conformational Control of Quantum Interference to Modulate Single-Molecule Conductance.
    Jiang F; Trupp DI; Algethami N; Zheng H; He W; Alqorashi A; Zhu C; Tang C; Li R; Liu J; Sadeghi H; Shi J; Davidson R; Korb M; Sobolev AN; Naher M; Sangtarash S; Low PJ; Hong W; Lambert CJ
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):18987-18993. PubMed ID: 31617293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly nonlinear transport across single-molecule junctions via destructive quantum interference.
    Greenwald JE; Cameron J; Findlay NJ; Fu T; Gunasekaran S; Skabara PJ; Venkataraman L
    Nat Nanotechnol; 2021 Mar; 16(3):313-317. PubMed ID: 33288949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large negative differential conductance in single-molecule break junctions.
    Perrin ML; Frisenda R; Koole M; Seldenthuis JS; Gil JA; Valkenier H; Hummelen JC; Renaud N; Grozema FC; Thijssen JM; Dulić D; van der Zant HS
    Nat Nanotechnol; 2014 Oct; 9(10):830-4. PubMed ID: 25173832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.