These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28106418)
1. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks. Pyle R; Rosenbaum R Phys Rev Lett; 2017 Jan; 118(1):018103. PubMed ID: 28106418 [TBL] [Abstract][Full Text] [Related]
2. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. Buesing L; Bill J; Nessler B; Maass W PLoS Comput Biol; 2011 Nov; 7(11):e1002211. PubMed ID: 22096452 [TBL] [Abstract][Full Text] [Related]
3. Driving reservoir models with oscillations: a solution to the extreme structural sensitivity of chaotic networks. Vincent-Lamarre P; Lajoie G; Thivierge JP J Comput Neurosci; 2016 Dec; 41(3):305-322. PubMed ID: 27585661 [TBL] [Abstract][Full Text] [Related]
4. Recurrent spatiotemporal firing patterns in large spiking neural networks with ontogenetic and epigenetic processes. Iglesias J; Villa AE J Physiol Paris; 2010; 104(3-4):137-46. PubMed ID: 19944154 [TBL] [Abstract][Full Text] [Related]
5. Learning recurrent dynamics in spiking networks. Kim CM; Chow CC Elife; 2018 Sep; 7():. PubMed ID: 30234488 [TBL] [Abstract][Full Text] [Related]
6. Fading memory and kernel properties of generic cortical microcircuit models. Maass W; Natschläger T; Markram H J Physiol Paris; 2004; 98(4-6):315-30. PubMed ID: 16310350 [TBL] [Abstract][Full Text] [Related]
7. An extended model for a spiking neuron class. Guerreiro AM; Paz de Araujo CA Biol Cybern; 2007 Sep; 97(3):211-9. PubMed ID: 17647011 [TBL] [Abstract][Full Text] [Related]
8. Numerical studies of slow rhythms emergence in neural microcircuits: bifurcations and stability. Komarov MA; Osipov GV; Suykens JA; Rabinovich MI Chaos; 2009 Mar; 19(1):015107. PubMed ID: 19335011 [TBL] [Abstract][Full Text] [Related]
9. Dynamic Spatiotemporal Pattern Recognition With Recurrent Spiking Neural Network. Shen J; Liu JK; Wang Y Neural Comput; 2021 Oct; 33(11):2971-2995. PubMed ID: 34474470 [TBL] [Abstract][Full Text] [Related]
10. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit. Brink S; Nease S; Hasler P Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925 [TBL] [Abstract][Full Text] [Related]
11. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells. Voelker AR; Eliasmith C Neural Comput; 2018 Mar; 30(3):569-609. PubMed ID: 29220306 [TBL] [Abstract][Full Text] [Related]
12. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework. Song HF; Yang GR; Wang XJ PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718 [TBL] [Abstract][Full Text] [Related]
13. Efficient computation based on stochastic spikes. Ernst U; Rotermund D; Pawelzik K Neural Comput; 2007 May; 19(5):1313-43. PubMed ID: 17381268 [TBL] [Abstract][Full Text] [Related]
14. Investigating the computational power of spiking neurons with non-standard behaviors. Kampakis S Neural Netw; 2013 Jul; 43():41-54. PubMed ID: 23500499 [TBL] [Abstract][Full Text] [Related]
15. Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development. Iglesias J; Villa AE Int J Neural Syst; 2008 Aug; 18(4):267-77. PubMed ID: 18763727 [TBL] [Abstract][Full Text] [Related]
16. Learning spatiotemporal signals using a recurrent spiking network that discretizes time. Maes A; Barahona M; Clopath C PLoS Comput Biol; 2020 Jan; 16(1):e1007606. PubMed ID: 31961853 [TBL] [Abstract][Full Text] [Related]
17. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons. Pecevski D; Buesing L; Maass W PLoS Comput Biol; 2011 Dec; 7(12):e1002294. PubMed ID: 22219717 [TBL] [Abstract][Full Text] [Related]
18. Small universal spiking neural P systems working in exhaustive mode. Pan L; Zeng X IEEE Trans Nanobioscience; 2011 Jun; 10(2):99-105. PubMed ID: 21712164 [TBL] [Abstract][Full Text] [Related]
19. A model for fast analog computation based on unreliable synapses. Maass W; Natschläger T Neural Comput; 2000 Jul; 12(7):1679-704. PubMed ID: 10935922 [TBL] [Abstract][Full Text] [Related]
20. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Hosaka R; Araki O; Ikeguchi T Neural Comput; 2008 Feb; 20(2):415-35. PubMed ID: 18045011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]