BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28106510)

  • 1. A drive in SUVs: From development to disease.
    Rao VK; Pal A; Taneja R
    Epigenetics; 2017 Mar; 12(3):177-186. PubMed ID: 28106510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of adipogenesis by histone methyltransferases.
    Zhao Y; Skovgaard Z; Wang Q
    Differentiation; 2024; 136():100746. PubMed ID: 38241884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant histone methylation and the effect of Suv39H1 siRNA on gastric carcinoma.
    Cai L; Ma X; Huang Y; Zou Y; Chen X
    Oncol Rep; 2014 Jun; 31(6):2593-600. PubMed ID: 24737085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of SUV39H1 Histone Methyltransferase Knockout on Expression of Differentiation-Associated Genes in HaCaT Keratinocytes.
    Sobiak B; Leśniak W
    Cells; 2020 Dec; 9(12):. PubMed ID: 33297464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein.
    Carbone R; Botrugno OA; Ronzoni S; Insinga A; Di Croce L; Pelicci PG; Minucci S
    Mol Cell Biol; 2006 Feb; 26(4):1288-96. PubMed ID: 16449642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the histone H3 lysine 9 methyltransferase Suv39 h1 in maintaining Epsteinn-Barr virus latency in B95-8 cells.
    Imai K; Kamio N; Cueno ME; Saito Y; Inoue H; Saito I; Ochiai K
    FEBS J; 2014 May; 281(9):2148-58. PubMed ID: 24588869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression.
    Saha N; Muntean AG
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188498. PubMed ID: 33373647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma.
    Chiba T; Saito T; Yuki K; Zen Y; Koide S; Kanogawa N; Motoyama T; Ogasawara S; Suzuki E; Ooka Y; Tawada A; Otsuka M; Miyazaki M; Iwama A; Yokosuka O
    Int J Cancer; 2015 Jan; 136(2):289-98. PubMed ID: 24844570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation.
    Vaquero A; Scher M; Erdjument-Bromage H; Tempst P; Serrano L; Reinberg D
    Nature; 2007 Nov; 450(7168):440-4. PubMed ID: 18004385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells.
    Tsuchiya Y; Naito T; Tenno M; Maruyama M; Koseki H; Taniuchi I; Naoe Y
    J Leukoc Biol; 2016 Aug; 100(2):327-38. PubMed ID: 26896487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium.
    Plachot C; Lelièvre SA
    Exp Cell Res; 2004 Aug; 298(1):122-32. PubMed ID: 15242767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDK2-dependent phosphorylation of Suv39H1 is involved in control of heterochromatin replication during cell cycle progression.
    Park SH; Yu SE; Chai YG; Jang YK
    Nucleic Acids Res; 2014 Jun; 42(10):6196-207. PubMed ID: 24728993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation.
    Brero A; Easwaran HP; Nowak D; Grunewald I; Cremer T; Leonhardt H; Cardoso MC
    J Cell Biol; 2005 Jun; 169(5):733-43. PubMed ID: 15939760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle.
    Blomen VA; Boonstra J
    Cell Mol Life Sci; 2011 Jan; 68(1):27-44. PubMed ID: 20799050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of retinoblastoma family proteins in the establishment and maintenance of the epigenetic landscape.
    Fiorentino FP; Marchesi I; Giordano A
    J Cell Physiol; 2013 Feb; 228(2):276-84. PubMed ID: 22718354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals.
    Fioriniello S; Marano D; Fiorillo F; D'Esposito M; Della Ragione F
    Genes (Basel); 2020 May; 11(6):. PubMed ID: 32481609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterochromatin and Polycomb as regulators of haematopoiesis.
    Keenan CR
    Biochem Soc Trans; 2021 Apr; 49(2):805-814. PubMed ID: 33929498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The control of histone lysine methylation in epigenetic regulation.
    Völkel P; Angrand PO
    Biochimie; 2007 Jan; 89(1):1-20. PubMed ID: 16919862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone acetylation and chromatin signature in stem cell identity and cancer.
    Shukla V; Vaissière T; Herceg Z
    Mutat Res; 2008 Jan; 637(1-2):1-15. PubMed ID: 17850830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications.
    Sigalotti L; Fratta E; Coral S; Cortini E; Covre A; Nicolay HJ; Anzalone L; Pezzani L; Di Giacomo AM; Fonsatti E; Colizzi F; Altomonte M; Calabrò L; Maio M
    J Cell Physiol; 2007 Aug; 212(2):330-44. PubMed ID: 17458893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.