BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28106750)

  • 1. Synthesis and Biotransformation of Bicyclic Unsaturated Lactones with Three or Four Methyl Groups.
    Wińska K; Grabarczyk M; Mączka W; Kondas A; Maciejewska G; Bonikowski R; Anioł M
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactones 41. Synthesis and microbial hydroxylation of unsaturated terpenoid lactones with p-menthane ring systems.
    Grudniewska A; Wawrzeńczyk C
    Molecules; 2013 Mar; 18(3):2778-87. PubMed ID: 23455669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial transformations of halolactones with p-menthane system.
    Mazur M; Grudniewska A; Wawrzeńczyk C
    J Biosci Bioeng; 2015 Jan; 119(1):72-6. PubMed ID: 25027724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactones 35 [1]. Metabolism of iodolactones with cyclohexane ring in Absidia cylindrospora culture.
    Gładkowski W; Mazur M; Białońska A; Wawrzeńczyk C
    Enzyme Microb Technol; 2011 Apr; 48(4-5):326-33. PubMed ID: 22112945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of Bicyclic Halolactones with a Methyl Group in the Cyclohexane Ring into Hydroxylactones and Their Biological Activity.
    Wińska K; Grabarczyk M; Mączka W; Żarowska B; Maciejewska G; Dancewicz K; Gabryś B; Szumny A; Anioł M
    Molecules; 2016 Oct; 21(11):. PubMed ID: 27809258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of structure of lactones with the methylcyclohexene and dimethylcyclohexene ring on their biotransformation and antimicrobial activity.
    Wińska K; Grabarczyk M; Mączka W; Żarowska B; Maciejewska G; Anioł M
    Z Naturforsch C J Biosci; 2017 May; 72(5-6):209-217. PubMed ID: 28107178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of tetrahydro-alpha-santonins by Absidia coerulea.
    Yang L; Dai J
    Nat Prod Res; 2008 Apr; 22(6):499-506. PubMed ID: 18415857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of aliphatic acids in the biosynthesis of vermiculin in penicillium vermiculatum.
    Proksa B; Fuska J
    Pharmazie; 1995 Mar; 50(3):215-6. PubMed ID: 7732055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of olivetol by Syncephalastrum racemosum.
    McClanahan RH; Robertson LW
    J Nat Prod; 1984; 47(5):828-34. PubMed ID: 6512535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformations of testosterone and related steroids in Absidia glauca culture.
    Huszcza E; Dmochowska-Gladysz J
    J Basic Microbiol; 2003; 43(2):113-20. PubMed ID: 12746853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of α- and β-naphthoflavones as monooxygenase inhibitors of Absidia coerulea KCh 93, Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651 in transformation of 17α-methyltestosterone.
    Janeczko T; Popłoński J; Kozłowska E; Dymarska M; Huszcza E; Kostrzewa-Susłow E
    Bioorg Chem; 2018 Aug; 78():178-184. PubMed ID: 29574302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydroxylation of plant diterpene analogues by the fungus Syncephalastrum racemosum.
    Milanova R; Moore M
    Arch Biochem Biophys; 1993 May; 303(1):165-71. PubMed ID: 8489261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of progesterone by Absidia griseolla var. igachii and Rhizomucor pusillus.
    Habibi Z; Yousefi M; Ghanian S; Mohammadi M; Ghasemi S
    Steroids; 2012 Nov; 77(13):1446-9. PubMed ID: 22974825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring mutasynthesis to increase structural diversity in the synthesis of highly oxygenated polyketide lactones.
    Botubol-Ares JM; Durán-Peña MJ; Macías-Sánchez AJ; Hanson JR; Collado IG; Hernández-Galán R
    Org Biomol Chem; 2014 Jul; 12(28):5304-10. PubMed ID: 24927251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling.
    Huang LH; Li J; Xu G; Zhang XH; Wang YG; Yin YL; Liu HM
    Steroids; 2010 Dec; 75(13-14):1039-46. PubMed ID: 20600202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system.
    Grabarczyk M
    Molecules; 2012 Aug; 17(8):9741-53. PubMed ID: 22893020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic fate of pregnene-based steroids in the lactonization pathway of multifunctional strain Penicillium lanosocoeruleum.
    Świzdor A; Panek A; Ostrowska P
    Microb Cell Fact; 2018 Jun; 17(1):100. PubMed ID: 29940969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New AChE inhibitors from microbial transformation of trachyloban-19-oic acid by Syncephalastrum racemosum.
    Dos Santos GF; da Silva Lima G; Pereira de Oliveira G; de Souza Filho JD; da Silva Amaral L; Rodrigues-Filho E; Takahashi JA
    Bioorg Chem; 2018 Sep; 79():60-63. PubMed ID: 29723742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of phase I and phase II metabolites of propranolol.
    Marvalin C; Azerad R
    Xenobiotica; 2011 Mar; 41(3):175-86. PubMed ID: 21110747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial synthesis of 1 beta- and 15 beta-hydroxylated bile acids.
    Carlström K; Kirk DN; Sjövall J
    J Lipid Res; 1981 Nov; 22(8):1225-34. PubMed ID: 7320633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.