These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28106763)

  • 1. Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas.
    Lin YP; Huang CJ; Chen SH; Doong DJ; Kao CC
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developments of GNSS buoy for a synthetic geohazard monitoring system.
    Kato T; Terada Y; Tadokoro K; Futamura A
    Proc Jpn Acad Ser B Phys Biol Sci; 2022; 98(2):49-71. PubMed ID: 35153269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea Surface Height Measurements Based on Multi-Antenna GNSS Buoys.
    Xue X; Yang J; Zhao Q; Wang S; Zhao R; Shao H
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.
    Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of GNSS-RTK derived topographical maps for rapid environmental monitoring: a case study of Jack Finnery Lake (Perth, Australia).
    Schloderer G; Bingham M; Awange JL; Fleming KM
    Environ Monit Assess; 2011 Sep; 180(1-4):147-61. PubMed ID: 21136293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights.
    Bae TS; Grejner-Brzezinska D; Mader G; Dennis M
    Sensors (Basel); 2015 Oct; 15(10):27215-29. PubMed ID: 26516856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.
    Li T; Zhang H; Niu X; Gao Z
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29077070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Low-Cost Smart Sensor GNSS System for Real-Time Positioning and Orientation for Floating Offshore Wind Platform.
    Revert Calabuig N; Laarossi I; Álvarez González A; Pérez Nuñez A; González Pérez L; García-Minguillán AC
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Global Navigation Satellite Systems network real-time kinematic infrastructure for homogeneous positioning performance from the perspective of tropospheric effects.
    Yu C; Penna NT; Li Z
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200248. PubMed ID: 33214759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cost GNSS and PPP-RTK: Investigating the Capabilities of the u-blox ZED-F9P Module.
    Robustelli U; Cutugno M; Pugliano G
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asynchronous RTK Method for Detecting the Stability of the Reference Station in GNSS Deformation Monitoring.
    Du Y; Huang G; Zhang Q; Gao Y; Gao Y
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles.
    Kim E; Kim SK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image Mapping Accuracy Evaluation Using UAV with Standalone, Differential (RTK), and PPP GNSS Positioning Techniques in an Abandoned Mine Site.
    Kim H; Hyun CU; Park HD; Cha J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
    Nadarajah N; Khodabandeh A; Wang K; Choudhury M; Teunissen PJG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the Algorithm Model for Measuring Ocean Waves Based on Satellite GPS Signals in China.
    Qi Z; Li S; Li M; Dang C; Sun D; Zhang D; Liu N; Zhang S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones.
    Dabove P; Di Pietra V
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Extended Kalman Filter and Back Propagation Neural Network Algorithm Positioning Method Based on Anti-lock Brake Sensor and Global Navigation Satellite System Information.
    Hu J; Wu Z; Qin X; Geng H; Gao Z
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Displacement Estimation for Long-Span Bridges Using Acceleration and Heuristically Enhanced Displacement Measurements of Real-Time Kinematic Global Navigation System.
    Kim K; Sohn H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Real-Time PPP-Based Tide Measurement Using IGS Real-Time Service.
    Di M; Zhang A; Guo B; Zhang J; Liu R; Li M
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified RTK-GNSS for Challenging Environments.
    Fredeluces E; Ozeki T; Kubo N; El-Mowafy A
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.