BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28107008)

  • 1. Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for Low Sample Amounts Applied to Primary Hippocampal Neurons.
    Post H; Penning R; Fitzpatrick MA; Garrigues LB; Wu W; MacGillavry HD; Hoogenraad CC; Heck AJ; Altelaar AF
    J Proteome Res; 2017 Feb; 16(2):728-737. PubMed ID: 28107008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue.
    Murillo JR; Kuras M; Rezeli M; Miliotis T; Betancourt L; Marko-Varga G
    PLoS One; 2018; 13(12):e0208562. PubMed ID: 30532160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Phosphopeptide Enrichment for Gram-Positive Bacteria.
    Birk MS; Charpentier E; Frese CK
    J Proteome Res; 2021 Oct; 20(10):4886-4892. PubMed ID: 34473931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography.
    Ruprecht B; Koch H; Domasinska P; Frejno M; Kuster B; Lemeer S
    Methods Mol Biol; 2017; 1550():47-60. PubMed ID: 28188522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment.
    Arribas Diez I; Govender I; Naicker P; Stoychev S; Jordaan J; Jensen ON
    J Proteome Res; 2021 Jan; 20(1):453-462. PubMed ID: 33226818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples.
    Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON
    J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotton Ti-IMAC: Developing Phosphorylated Cotton as a Novel Platform for Phosphopeptide Enrichment.
    Wang D; Huang J; Zhang H; Gu TJ; Li L
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):47893-47901. PubMed ID: 37812448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics.
    Bortel P; Piga I; Koenig C; Gerner C; Martinez-Val A; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(5):100754. PubMed ID: 38548019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides.
    Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.
    He M; Wang J; Herold S; Xi L; Schulze WX
    Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an enrichment method for endogenous phosphopeptide characterization in human serum.
    La Barbera G; Capriotti AL; Cavaliere C; Ferraris F; Laus M; Piovesana S; Sparnacci K; Laganà A
    Anal Bioanal Chem; 2018 Jan; 410(3):1177-1185. PubMed ID: 29318361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Affinity chromatography based phosphoproteome research on lung cancer cells and its application].
    Zhang B; Wang C; Guo M; Xiao H
    Se Pu; 2021 Jan; 39(1):77-86. PubMed ID: 34227361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns.
    Ruprecht B; Koch H; Medard G; Mundt M; Kuster B; Lemeer S
    Mol Cell Proteomics; 2015 Jan; 14(1):205-15. PubMed ID: 25394399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Characterization of Histidine Phosphorylation Sites Using UPAX and Tandem Mass Spectrometry.
    Hardman G; Eyers CE
    Methods Mol Biol; 2020; 2077():225-235. PubMed ID: 31707662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis.
    Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H
    J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated strategy for highly sensitive phosphoproteome analysis from low micrograms of protein samples.
    Chen W; Chen L; Tian R
    Analyst; 2018 Jul; 143(15):3693-3701. PubMed ID: 29978859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.