BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28107627)

  • 21. Oxidation of H2S in mammalian cells and mitochondria.
    Abou-Hamdan A; Guedouari-Bounihi H; Lenoir V; Andriamihaja M; Blachier F; Bouillaud F
    Methods Enzymol; 2015; 554():201-28. PubMed ID: 25725524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria.
    Ran M; Li Q; Xin Y; Ma S; Zhao R; Wang M; Xun L; Xia Y
    Redox Biol; 2022 Jul; 53():102345. PubMed ID: 35653932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Catalytic Trisulfide in Human Sulfide Quinone Oxidoreductase Catalyzes Coenzyme A Persulfide Synthesis and Inhibits Butyrate Oxidation.
    Landry AP; Moon S; Kim H; Yadav PK; Guha A; Cho US; Banerjee R
    Cell Chem Biol; 2019 Nov; 26(11):1515-1525.e4. PubMed ID: 31591036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS).
    Olson KR; Gao Y; DeLeon ER; Arif M; Arif F; Arora N; Straub KD
    Redox Biol; 2017 Aug; 12():325-339. PubMed ID: 28285261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cupriavidus necator H16 Uses Flavocytochrome
    Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils.
    Mitsuhashi H; Yamashita S; Ikeuchi H; Kuroiwa T; Kaneko Y; Hiromura K; Ueki K; Nojima Y
    Shock; 2005 Dec; 24(6):529-34. PubMed ID: 16317383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of a central intermediate in hydrogen sulfide metabolism by a novel human sulfurtransferase and its yeast ortholog.
    Melideo SL; Jackson MR; Jorns MS
    Biochemistry; 2014 Jul; 53(28):4739-53. PubMed ID: 24981631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.
    Kowalczyk-Pachel D; Iciek M; Wydra K; Nowak E; Górny M; Filip M; Włodek L; Lorenc-Koci E
    PLoS One; 2016; 11(1):e0147238. PubMed ID: 26808533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.
    Calderwood A; Kopriva S
    Nitric Oxide; 2014 Sep; 41():72-8. PubMed ID: 24582856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism.
    Kohl JB; Mellis AT; Schwarz G
    Br J Pharmacol; 2019 Feb; 176(4):554-570. PubMed ID: 30088670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium
    Peck SC; Denger K; Burrichter A; Irwin SM; Balskus EP; Schleheck D
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3171-3176. PubMed ID: 30718429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics.
    Módis K; Coletta C; Erdélyi K; Papapetropoulos A; Szabo C
    FASEB J; 2013 Feb; 27(2):601-11. PubMed ID: 23104984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis.
    Fang H; Liu Z; Jin Z; Zhang L; Liu D; Pei Y
    Environ Pollut; 2016 Jun; 213():870-877. PubMed ID: 27038574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome.
    Luna-Sánchez M; Hidalgo-Gutiérrez A; Hildebrandt TM; Chaves-Serrano J; Barriocanal-Casado E; Santos-Fandila Á; Romero M; Sayed RK; Duarte J; Prokisch H; Schuelke M; Distelmaier F; Escames G; Acuña-Castroviejo D; López LC
    EMBO Mol Med; 2017 Jan; 9(1):78-95. PubMed ID: 27856619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. S-Transnitrosation reactions of hydrogen sulfide (H
    Tsikas D; Böhmer A
    Nitric Oxide; 2017 May; 65():22-36. PubMed ID: 28185882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen.
    Jiranek V; Langridge P; Henschke PA
    Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfite protects neurons from oxidative stress.
    Kimura Y; Shibuya N; Kimura H
    Br J Pharmacol; 2019 Feb; 176(4):571-582. PubMed ID: 29808913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The critical roles of propanethiol oxidoreductase and sulfide-quinone oxidoreductase in the propanethiol catabolism pathway in
    Qiao P; Ning L; Chen J; Tang Y; Zhao R; Chen G; Ye Q; Zhou T; Chen J; Zhong W
    Appl Environ Microbiol; 2024 Feb; 90(2):e0195923. PubMed ID: 38193681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Hemoproteins: Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes.
    Bilska-Wilkosz A; Iciek M; Górny M; Kowalczyk-Pachel D
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28632164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. H
    Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L
    Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.