These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28107647)

  • 81. Dynamics of +1 ribosomal frameshifting.
    Xie P
    Math Biosci; 2014 Mar; 249():44-51. PubMed ID: 24508018
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Conservation and diversity of the Helicobacter pylori copper-transporting ATPase gene (copA) sequence among Helicobacter species and Campylobacter species detected by PCR and RFLP.
    Ge Z; Jiang Q; Taylor DE
    Helicobacter; 1996 Jun; 1(2):112-7. PubMed ID: 9398888
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [From gene to disease: copper-transporting P ATPases alteration].
    Garcia Hejl C; Vrignaud C; Garcia C; Ceppa F
    Pathol Biol (Paris); 2009 May; 57(3):272-9. PubMed ID: 19046832
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level.
    Bartee MY; Lutsenko S
    Biometals; 2007 Jun; 20(3-4):627-37. PubMed ID: 17268820
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Activation of Archaeoglobus fulgidus Cu(+)-ATPase CopA by cysteine.
    Yang Y; Mandal AK; Bredeston LM; González-Flecha FL; Argüello JM
    Biochim Biophys Acta; 2007 Mar; 1768(3):495-501. PubMed ID: 17064659
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
    Bhatt PR; Scaiola A; Loughran G; Leibundgut M; Kratzel A; Meurs R; Dreos R; O'Connor KM; McMillan A; Bode JW; Thiel V; Gatfield D; Atkins JF; Ban N
    Science; 2021 Jun; 372(6548):1306-1313. PubMed ID: 34029205
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A three-way junction and constituent stem-loops as the stimulator for programmed -1 frameshifting in bacterial insertion sequence IS911.
    Rettberg CC; Prère MF; Gesteland RF; Atkins JF; Fayet O
    J Mol Biol; 1999 Mar; 286(5):1365-78. PubMed ID: 10064703
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The SARS-CoV-2 Programmed -1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography.
    Roman C; Lewicka A; Koirala D; Li NS; Piccirilli JA
    ACS Chem Biol; 2021 Aug; 16(8):1469-1481. PubMed ID: 34328734
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The energy landscape of -1 ribosomal frameshifting.
    Choi J; O'Loughlin S; Atkins JF; Puglisi JD
    Sci Adv; 2020 Jan; 6(1):eaax6969. PubMed ID: 31911945
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.
    Grillo-Puertas M; Schurig-Briccio LA; Rodríguez-Montelongo L; Rintoul MR; Rapisarda VA
    BMC Microbiol; 2014 Mar; 14():72. PubMed ID: 24645672
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Intestinal expression of metal transporters in Wilson's disease.
    Przybyłkowski A; Gromadzka G; Wawer A; Grygorowicz T; Cybulska A; Członkowska A
    Biometals; 2013 Dec; 26(6):925-34. PubMed ID: 23963605
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events.
    Penn WD; Harrington HR; Schlebach JP; Mukhopadhyay S
    Annu Rev Virol; 2020 Sep; 7(1):219-238. PubMed ID: 32600156
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Influence of the stacking potential of the base 3' of tandem shift codons on -1 ribosomal frameshifting used for gene expression.
    Bertrand C; Prère MF; Gesteland RF; Atkins JF; Fayet O
    RNA; 2002 Jan; 8(1):16-28. PubMed ID: 11871658
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Global analysis of translation termination in E. coli.
    Baggett NE; Zhang Y; Gross CA
    PLoS Genet; 2017 Mar; 13(3):e1006676. PubMed ID: 28301469
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Correction of the copper transport defect of Menkes patient fibroblasts by expression of two forms of the sheep Wilson ATPase.
    Lockhart PJ; La Fontaine S; Firth SD; Greenough M; Camakaris J; Mercer JF
    Biochim Biophys Acta; 2002 Nov; 1588(2):189-94. PubMed ID: 12385784
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity.
    White C; Lee J; Kambe T; Fritsche K; Petris MJ
    J Biol Chem; 2009 Dec; 284(49):33949-56. PubMed ID: 19808669
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Programmed +1 frameshifting stimulated by complementarity between a downstream mRNA sequence and an error-correcting region of rRNA.
    Li Z; Stahl G; Farabaugh PJ
    RNA; 2001 Feb; 7(2):275-84. PubMed ID: 11233984
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Clusterin (apolipoprotein J), a molecular chaperone that facilitates degradation of the copper-ATPases ATP7A and ATP7B.
    Materia S; Cater MA; Klomp LW; Mercer JF; La Fontaine S
    J Biol Chem; 2011 Mar; 286(12):10073-83. PubMed ID: 21242307
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.
    Bagai I; Rensing C; Blackburn NJ; McEvoy MM
    Biochemistry; 2008 Nov; 47(44):11408-14. PubMed ID: 18847219
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting.
    Wang X; Xuan Y; Han Y; Ding X; Ye K; Yang F; Gao P; Goff SP; Gao G
    Cell; 2019 Jan; 176(3):625-635.e14. PubMed ID: 30682371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.