BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 28107648)

  • 1. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and Modulating Its Transcriptional Activity.
    Luo X; Ryu KW; Kim DS; Nandu T; Medina CJ; Gupte R; Gibson BA; Soccio RE; Yu Y; Gupta RK; Kraus WL
    Mol Cell; 2017 Jan; 65(2):260-271. PubMed ID: 28107648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA maintenance following bleomycin-induced strand breaks does not require poly(ADP-ribosyl)ation activation in Drosophila S2 cells.
    Ishak L; Moretton A; Garreau-Balandier I; Lefebvre M; Alziari S; Lachaume P; Morel F; Farge G; Vernet P; Dubessay P
    DNA Repair (Amst); 2016 Dec; 48():8-16. PubMed ID: 27793508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cross-talk between PARylation and SUMOylation in C/EBPβ at K134 site participates in pathological cardiac hypertrophy.
    Wang L; Wang P; Xu S; Li Z; Duan DD; Ye J; Li J; Ding Y; Zhang W; Lu J; Liu P
    Int J Biol Sci; 2022; 18(2):783-799. PubMed ID: 35002525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney.
    Jang HJ; Park E; Jung HJ; Kwon TH
    Am J Physiol Renal Physiol; 2024 Jan; 326(1):F69-F85. PubMed ID: 37855039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2019 May; 47(8):3811-3827. PubMed ID: 30799503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inputs and outputs of poly(ADP-ribosyl)ation: Relevance to oxidative stress.
    Hegedűs C; Virág L
    Redox Biol; 2014; 2():978-82. PubMed ID: 25460733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells.
    Okuda A; Kurokawa S; Takehashi M; Maeda A; Fukuda K; Kubo Y; Nogusa H; Takatani-Nakase T; Okuda S; Ueda K; Tanaka S
    BMC Neurosci; 2017 Jan; 18(1):14. PubMed ID: 28095779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ADP-ribose) signaling in cell death.
    Virág L; Robaszkiewicz A; Rodriguez-Vargas JM; Oliver FJ
    Mol Aspects Med; 2013 Dec; 34(6):1153-67. PubMed ID: 23416893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The poly(ADP-ribosyl)ation of FoxO3 mediated by PARP1 participates in isoproterenol-induced cardiac hypertrophy.
    Lu J; Zhang R; Hong H; Yang Z; Sun D; Sun S; Guo X; Ye J; Li Z; Liu P
    Biochim Biophys Acta; 2016 Dec; 1863(12):3027-3039. PubMed ID: 27686254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic regulation of transcription through compartmentalized NAD
    Ryu KW; Nandu T; Kim J; Challa S; DeBerardinis RJ; Kraus WL
    Science; 2018 May; 360(6389):. PubMed ID: 29748257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP Inhibitor PJ34 Suppresses Osteogenic Differentiation in Mouse Mesenchymal Stem Cells by Modulating BMP-2 Signaling Pathway.
    Kishi Y; Fujihara H; Kawaguchi K; Yamada H; Nakayama R; Yamamoto N; Fujihara Y; Hamada Y; Satomura K; Masutani M
    Int J Mol Sci; 2015 Oct; 16(10):24820-38. PubMed ID: 26492236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities.
    Khadka P; Hsu JK; Veith S; Tadokoro T; Shamanna RA; Mangerich A; Croteau DL; Bohr VA
    Mol Cell Biol; 2015 Dec; 35(23):3974-89. PubMed ID: 26391948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin attenuated adipogenesis through reduction of the CCAAT/enhancer binding protein beta by regulating the glycogen synthase 3 beta in human mesenchymal stem cells.
    Rhee YH; Ahn JC
    J Physiol Biochem; 2016 Jun; 72(2):145-55. PubMed ID: 26797706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1.
    Zaniolo K; Desnoyers S; Leclerc S; Guérin SL
    BMC Mol Biol; 2007 Oct; 8():96. PubMed ID: 17961220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRB3 blocks adipocyte differentiation through the inhibition of C/EBPbeta transcriptional activity.
    Bezy O; Vernochet C; Gesta S; Farmer SR; Kahn CR
    Mol Cell Biol; 2007 Oct; 27(19):6818-31. PubMed ID: 17646392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MORC2 regulates DNA damage response through a PARP1-dependent pathway.
    Zhang L; Li DQ
    Nucleic Acids Res; 2019 Sep; 47(16):8502-8520. PubMed ID: 31616951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.
    Lechner S; Mitterberger MC; Mattesich M; Zwerschke W
    Differentiation; 2013 Jan; 85(1-2):20-31. PubMed ID: 23314288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of poly(ADP-ribosyl)ated DNA replication/repair complexes.
    Simbulan-Rosenthal CM; Rosenthal DS; Smulson ME
    Methods Mol Biol; 2011; 780():165-90. PubMed ID: 21870261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1.
    Fischbach A; Krüger A; Hampp S; Assmann G; Rank L; Hufnagel M; Stöckl MT; Fischer JMF; Veith S; Rossatti P; Ganz M; Ferrando-May E; Hartwig A; Hauser K; Wiesmüller L; Bürkle A; Mangerich A
    Nucleic Acids Res; 2018 Jan; 46(2):804-822. PubMed ID: 29216372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.