These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 28107717)
1. Diclofenac can exhibit estrogenic modes of action in male Xenopus laevis, and affects the hypothalamus-pituitary-gonad axis and mating vocalizations. Efosa NJ; Kleiner W; Kloas W; Hoffmann F Chemosphere; 2017 Apr; 173():69-77. PubMed ID: 28107717 [TBL] [Abstract][Full Text] [Related]
2. p,p'-Dichlordiphenyldichloroethylene (p,p'-DDE) can elicit antiandrogenic and estrogenic modes of action in the amphibian Xenopus laevis. Hoffmann F; Kloas W Physiol Behav; 2016 Dec; 167():172-178. PubMed ID: 27640133 [TBL] [Abstract][Full Text] [Related]
3. Chronic diclofenac exposure affects gill integrity and pituitary gene expression and displays estrogenic activity in nile tilapia (Oreochromis niloticus). Gröner F; Höhne C; Kleiner W; Kloas W Chemosphere; 2017 Jan; 166():473-481. PubMed ID: 27705833 [TBL] [Abstract][Full Text] [Related]
4. Tissue explant coculture model of the hypothalamic-pituitary-gonadal-liver axis of the fathead minnow (Pimephales promelas) as a predictive tool for endocrine disruption. Johnston TK; Perkins E; Ferguson DC; Cropek DM Environ Toxicol Chem; 2016 Oct; 35(10):2530-2541. PubMed ID: 26931821 [TBL] [Abstract][Full Text] [Related]
5. Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: estrogenic activity, endocrine disruption and reproductive effects on zebrafish. Wang Q; Lam JC; Han J; Wang X; Guo Y; Lam PK; Zhou B Aquat Toxicol; 2015 Mar; 160():163-71. PubMed ID: 25637911 [TBL] [Abstract][Full Text] [Related]
6. Chronic Exposure of Marine Medaka (Oryzias melastigma) to 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Chen L; Zhang W; Ye R; Hu C; Wang Q; Seemann F; Au DW; Zhou B; Giesy JP; Qian PY Environ Sci Technol; 2016 Apr; 50(8):4492-501. PubMed ID: 27035644 [TBL] [Abstract][Full Text] [Related]
7. An environmentally relevant endocrine-disrupting antiandrogen, vinclozolin, affects calling behavior of male Xenopus laevis. Hoffmann F; Kloas W Horm Behav; 2010 Sep; 58(4):653-9. PubMed ID: 20600051 [TBL] [Abstract][Full Text] [Related]
8. Mate calling behavior of male South African clawed frogs (Xenopus laevis) is suppressed by the antiandrogenic endocrine disrupting compound flutamide. Behrends T; Urbatzka R; Krackow S; Elepfandt A; Kloas W Gen Comp Endocrinol; 2010 Sep; 168(2):269-74. PubMed ID: 20138181 [TBL] [Abstract][Full Text] [Related]
9. Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis. Plunk EC; Richards SM Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33276521 [TBL] [Abstract][Full Text] [Related]
10. The synthetic progestogen, Levonorgestrel, but not natural progesterone, affects male mate calling behavior of Xenopus laevis. Hoffmann F; Kloas W Gen Comp Endocrinol; 2012 May; 176(3):385-90. PubMed ID: 22391239 [TBL] [Abstract][Full Text] [Related]
11. Endocrine Disruption throughout the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis in Marine Medaka (Oryzias melastigma) Chronically Exposed to the Antifouling and Chemopreventive Agent, 3,3'-Diindolylmethane (DIM). Chen L; Ye R; Zhang W; Hu C; Zhou B; Peterson DR; Au DW; Lam PK; Qian PY Chem Res Toxicol; 2016 Jun; 29(6):1020-8. PubMed ID: 27092574 [TBL] [Abstract][Full Text] [Related]
12. Exposure to DEHP and MEHP from hatching to adulthood causes reproductive dysfunction and endocrine disruption in marine medaka (Oryzias melastigma). Ye T; Kang M; Huang Q; Fang C; Chen Y; Shen H; Dong S Aquat Toxicol; 2014 Jan; 146():115-26. PubMed ID: 24292025 [TBL] [Abstract][Full Text] [Related]
13. The antiestrogens tamoxifen and fulvestrant abolish estrogenic impacts of 17α-ethinylestradiol on male calling behavior of Xenopus laevis. Hoffmann F; Kloas W PLoS One; 2012; 7(9):e44715. PubMed ID: 23028589 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulatory dynamics of the hypothalamic-pituitary-gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor trilostane in zebrafish (Danio rerio). Wang RL; Bencic D; Lazorchak J; Villeneuve D; Ankley GT Ecotoxicol Environ Saf; 2011 Sep; 74(6):1461-70. PubMed ID: 21570121 [TBL] [Abstract][Full Text] [Related]
15. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish. Yang Q; Yang X; Liu J; Ren W; Chen Y; Shen S Environ Sci Pollut Res Int; 2017 Sep; 24(26):21311-21322. PubMed ID: 28741210 [TBL] [Abstract][Full Text] [Related]
16. Dose-dependent compensation responses of the hypothalamic-pituitary-gonadal-liver axis of zebrafish exposed to the fungicide prochloraz. Dang Y; Giesy JP; Wang J; Liu C Aquat Toxicol; 2015 Mar; 160():69-75. PubMed ID: 25625521 [TBL] [Abstract][Full Text] [Related]
17. Disrupting effects of azocyclotin to the hypothalamo-pituitary-gonadal axis and reproduction of Xenopus laevis. Li S; Li M; Gui W; Wang Q; Zhu G Aquat Toxicol; 2017 Apr; 185():121-128. PubMed ID: 28213302 [TBL] [Abstract][Full Text] [Related]
18. Steroid exposure during larval development of Xenopus laevis affects mRNA expression of the reproductive pituitary-gonadal axis in a sex- and stage-dependent manner. Urbatzka R; Lorenz C; Wiedemann C; Lutz I; Kloas W Comp Biochem Physiol C Toxicol Pharmacol; 2014 Mar; 160():1-8. PubMed ID: 24239592 [TBL] [Abstract][Full Text] [Related]
19. Luteinizing hormone, follicle stimulating hormone, and gonadotropin releasing hormone mRNA expression of Xenopus laevis in response to endocrine disrupting compounds affecting reproductive biology. Urbatzka R; Lutz I; Opitz R; Kloas W Gen Comp Endocrinol; 2006 Apr; 146(2):119-25. PubMed ID: 16330033 [TBL] [Abstract][Full Text] [Related]