BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28107752)

  • 1. Genome-nuclear lamina interactions: from cell populations to single cells.
    Yáñez-Cuna JO; van Steensel B
    Curr Opin Genet Dev; 2017 Apr; 43():67-72. PubMed ID: 28107752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial chromatin organization and gene regulation at the nuclear lamina.
    Guerreiro I; Kind J
    Curr Opin Genet Dev; 2019 Apr; 55():19-25. PubMed ID: 31112905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local rewiring of genome-nuclear lamina interactions by transcription.
    Brueckner L; Zhao PA; van Schaik T; Leemans C; Sima J; Peric-Hupkes D; Gilbert DM; van Steensel B
    EMBO J; 2020 Mar; 39(6):e103159. PubMed ID: 32080885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle dynamics of lamina-associated DNA.
    van Schaik T; Vos M; Peric-Hupkes D; Hn Celie P; van Steensel B
    EMBO Rep; 2020 Nov; 21(11):e50636. PubMed ID: 32893442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery.
    Zheng X; Hu J; Yue S; Kristiani L; Kim M; Sauria M; Taylor J; Kim Y; Zheng Y
    Mol Cell; 2018 Sep; 71(5):802-815.e7. PubMed ID: 30201095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains.
    Wong X; Cutler JA; Hoskins VE; Gordon M; Madugundu AK; Pandey A; Reddy KL
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33758005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions.
    Guelen L; Pagie L; Brasset E; Meuleman W; Faza MB; Talhout W; Eussen BH; de Klein A; Wessels L; de Laat W; van Steensel B
    Nature; 2008 Jun; 453(7197):948-51. PubMed ID: 18463634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell dynamics of genome-nuclear lamina interactions.
    Kind J; Pagie L; Ortabozkoyun H; Boyle S; de Vries SS; Janssen H; Amendola M; Nolen LD; Bickmore WA; van Steensel B
    Cell; 2013 Mar; 153(1):178-92. PubMed ID: 23523135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of nuclear architecture: a genetic approach.
    Taddei A; Hediger F; Neumann FR; Gasser SM
    Annu Rev Genet; 2004; 38():305-45. PubMed ID: 15568979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choreography of lamina-associated domains: structure meets dynamics.
    Alagna NS; Thomas TI; Wilson KL; Reddy KL
    FEBS Lett; 2023 Nov; 597(22):2806-2822. PubMed ID: 37953467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF.
    Kind J; van Steensel B
    Nucleus; 2014; 5(2):124-30. PubMed ID: 24717229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells.
    Amendola M; van Steensel B
    EMBO Rep; 2015 May; 16(5):610-7. PubMed ID: 25784758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity.
    Tang Y; Dong Q; Wang T; Gong L; Gu Y
    Dev Cell; 2022 Jan; 57(1):19-31.e6. PubMed ID: 34822788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of lamins in 3D genome organization and global gene expression.
    Kim Y; Zheng X; Zheng Y
    Nucleus; 2019 Dec; 10(1):33-41. PubMed ID: 30755082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and dynamics of nuclear lamina-genome interactions.
    Amendola M; van Steensel B
    Curr Opin Cell Biol; 2014 Jun; 28():61-8. PubMed ID: 24694724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide maps of nuclear lamina interactions in single human cells.
    Kind J; Pagie L; de Vries SS; Nahidiazar L; Dey SS; Bienko M; Zhan Y; Lajoie B; de Graaf CA; Amendola M; Fudenberg G; Imakaev M; Mirny LA; Jalink K; Dekker J; van Oudenaarden A; van Steensel B
    Cell; 2015 Sep; 163(1):134-47. PubMed ID: 26365489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin at the nuclear periphery and the regulation of genome functions.
    Lemaître C; Bickmore WA
    Histochem Cell Biol; 2015 Aug; 144(2):111-22. PubMed ID: 26170147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Regulatory Interactions at Lamina-Associated Domains.
    Madsen-Østerbye J; Abdelhalim M; Pickering SH; Collas P
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.
    Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P
    Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter-Intrinsic and Local Chromatin Features Determine Gene Repression in LADs.
    Leemans C; van der Zwalm MCH; Brueckner L; Comoglio F; van Schaik T; Pagie L; van Arensbergen J; van Steensel B
    Cell; 2019 May; 177(4):852-864.e14. PubMed ID: 30982597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.