BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28107752)

  • 21. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome.
    van Bemmel JG; Pagie L; Braunschweig U; Brugman W; Meuleman W; Kerkhoven RM; van Steensel B
    PLoS One; 2010 Nov; 5(11):e15013. PubMed ID: 21124834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CTCF supports preferentially short lamina-associated domains.
    Kaczmarczyk LS; Levi N; Segal T; Salmon-Divon M; Gerlitz G
    Chromosome Res; 2022 Mar; 30(1):123-136. PubMed ID: 35239049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Nuclear Lamina.
    Wong X; Melendez-Perez AJ; Reddy KL
    Cold Spring Harb Perspect Biol; 2022 Feb; 14(2):. PubMed ID: 34400553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blank spots on the map: some current questions on nuclear organization and genome architecture.
    Adriaens C; Serebryannyy LA; Feric M; Schibler A; Meaburn KJ; Kubben N; Trzaskoma P; Shachar S; Vidak S; Finn EH; Sood V; Pegoraro G; Misteli T
    Histochem Cell Biol; 2018 Dec; 150(6):579-592. PubMed ID: 30238154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Nuclear Lamina as an Organizer of Chromosome Architecture.
    Shevelyov YY; Ulianov SV
    Cells; 2019 Feb; 8(2):. PubMed ID: 30744037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. To be or not be (in the LAD): emerging roles of lamin proteins in transcriptional regulation.
    Nazer E
    Biochem Soc Trans; 2022 Apr; 50(2):1035-1044. PubMed ID: 35437578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of lamin B-regulated chromatin regions based on chromatin landscapes.
    Zheng X; Kim Y; Zheng Y
    Mol Biol Cell; 2015 Jul; 26(14):2685-97. PubMed ID: 25995381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lamina Associated Domains and Gene Regulation in Development and Cancer.
    Lochs SJA; Kefalopoulou S; Kind J
    Cells; 2019 Mar; 8(3):. PubMed ID: 30901978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The plant nuclear lamina disassembles to regulate genome folding in stress conditions.
    Wang N; Wang Z; Tzourtzou S; Wang X; Bi X; Leimeister J; Xu L; Sakamoto T; Matsunaga S; Schaller A; Jiang H; Liu C
    Nat Plants; 2023 Jul; 9(7):1081-1093. PubMed ID: 37400513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lamina-associated domains: peripheral matters and internal affairs.
    Briand N; Collas P
    Genome Biol; 2020 Apr; 21(1):85. PubMed ID: 32241294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lamina-associated domains: Tethers and looseners.
    Manzo SG; Dauban L; van Steensel B
    Curr Opin Cell Biol; 2022 Feb; 74():80-87. PubMed ID: 35189475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression.
    van Steensel B; Belmont AS
    Cell; 2017 May; 169(5):780-791. PubMed ID: 28525751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the nuclear lamina in genome organization and gene expression.
    Peric-Hupkes D; van Steensel B
    Cold Spring Harb Symp Quant Biol; 2010; 75():517-24. PubMed ID: 21209388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.
    Lenain C; de Graaf CA; Pagie L; Visser NL; de Haas M; de Vries SS; Peric-Hupkes D; van Steensel B; Peeper DS
    Genome Res; 2017 Oct; 27(10):1634-1644. PubMed ID: 28916540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina.
    Hoskins VE; Smith K; Reddy KL
    Curr Opin Genet Dev; 2021 Apr; 67():163-173. PubMed ID: 33774266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nuclear lamins: flexibility in function.
    Burke B; Stewart CL
    Nat Rev Mol Cell Biol; 2013 Jan; 14(1):13-24. PubMed ID: 23212477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. InterLINCing Chromatin Organization and Mechanobiology in Laminopathies.
    Shah PP; Santini GT; Shen KM; Jain R
    Curr Cardiol Rep; 2023 May; 25(5):307-314. PubMed ID: 37052760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome architecture: domain organization of interphase chromosomes.
    Bickmore WA; van Steensel B
    Cell; 2013 Mar; 152(6):1270-84. PubMed ID: 23498936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-nuclear lamina interactions and gene regulation.
    Kind J; van Steensel B
    Curr Opin Cell Biol; 2010 Jun; 22(3):320-5. PubMed ID: 20444586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of nuclear lamina growth in interphase.
    Zhironkina OA; Kurchashova SY; Pozharskaia VA; Cherepanynets VD; Strelkova OS; Hozak P; Kireev II
    Histochem Cell Biol; 2016 Apr; 145(4):419-32. PubMed ID: 26883443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.