BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28107811)

  • 41. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2013 Apr; 24(4):441-9. PubMed ID: 22092911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics.
    Kalita SJ; Bose S; Hosick HL; Bandyopadhyay A
    Biomaterials; 2004 May; 25(12):2331-9. PubMed ID: 14741598
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Osteoblast-like cell proliferation on tape-cast and sintered tricalcium phosphate sheets.
    Tanimoto Y; Shibata Y; Kataoka Y; Miyazaki T; Nishiyama N
    Acta Biomater; 2008 Mar; 4(2):397-402. PubMed ID: 18054299
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new model formulation of the SiO2-Al2O3-B2O3-MgO-CaO-Na2O-F glass-ceramics.
    Agathopoulos S; Tulyaganov DU; Valério P; Ferreira JM
    Biomaterials; 2005 May; 26(15):2255-64. PubMed ID: 15585227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion.
    dos Santos EA; Farina M; Soares GA; Anselme K
    J Mater Sci Mater Med; 2008 Jun; 19(6):2307-16. PubMed ID: 18157507
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro.
    Ni S; Chang J; Chou L; Zhai W
    J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):174-83. PubMed ID: 16767735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel bioactive materials with different mechanical properties.
    Kokubo T; Kim HM; Kawashita M
    Biomaterials; 2003 Jun; 24(13):2161-75. PubMed ID: 12699652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.
    Ha NR; Yang ZX; Hwang KH; Kim TS; Lee JK
    J Nanosci Nanotechnol; 2010 May; 10(5):3459-62. PubMed ID: 20358978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and characterization of a novel willemite bioceramic.
    Zhang M; Zhai W; Chang J
    J Mater Sci Mater Med; 2010 Apr; 21(4):1169-73. PubMed ID: 20069346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.
    Baxter FR; Turner IG; Bowen CR; Gittings JP; Chaudhuri JB
    J Mater Sci Mater Med; 2009 Aug; 20(8):1697-708. PubMed ID: 19308338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An in-vitro evaluation of coralline porous hydroxyapatite as a scaffold for osteoblast growth.
    Norman ME; Elgendy HM; Shors EC; el-Amin SF; Laurencin CT
    Clin Mater; 1994; 17(2):85-91. PubMed ID: 10150211
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro interaction between primary bone organ cultures, glass-ionomer cements and hydroxyapatite/tricalcium phosphate ceramics.
    Brook IM; Craig GT; Lamb DJ
    Biomaterials; 1991 Mar; 12(2):179-86. PubMed ID: 1652294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of a plasma-sprayed hydroxyapatite coating in contact with human osteoblasts and culture medium.
    Labat B; Demonet N; Rattner A; Aurelle JL; Rieu J; Frey J; Chamson A
    J Biomed Mater Res; 1999 Sep; 46(3):331-6. PubMed ID: 10397989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomimetic mineralization on a macroporous cellulose-based matrix for bone regeneration.
    Petrauskaite O; Gomes Pde S; Fernandes MH; Juodzbalys G; Stumbras A; Maminskas J; Liesiene J; Cicciù M
    Biomed Res Int; 2013; 2013():452750. PubMed ID: 24163816
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis, characterization of calcium phosphates/polyurethane composites for weight-bearing implants.
    Yoshii T; Dumas JE; Okawa A; Spengler DM; Guelcher SA
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):32-40. PubMed ID: 21953899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Behaviour of MG-63 osteoblast-like cells on wood-based biomorphic SiC ceramics coated with bioactive glass.
    de Carlos A; Borrajo JP; Serra J; González P; León B
    J Mater Sci Mater Med; 2006 Jun; 17(6):523-9. PubMed ID: 16691350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate.
    Ergun C; Liu H; Halloran JW; Webster TJ
    J Biomed Mater Res A; 2007 Mar; 80(4):990-7. PubMed ID: 17120201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two step porosification of biomimetic thin-film hydroxyapatite/alpha-tri calcium phosphate coatings by pulsed electron beam irradiation.
    Stuart BW; Murray JW; Grant DM
    Sci Rep; 2018 Sep; 8(1):14530. PubMed ID: 30266971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method.
    Cama G; Gharibi B; Knowles JC; Romeed S; DiSilvio L; Deb S
    J R Soc Interface; 2014 Dec; 11(101):20140727. PubMed ID: 25297314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.