BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28107921)

  • 1. Highly selective enrichment of phosphopeptides using Zr
    Dai J; Wang M; Liu H
    Talanta; 2017 Mar; 164():222-227. PubMed ID: 28107921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilic modification of titania nanomaterials as a biofunctional adsorbent for selective enrichment of phosphopeptides.
    Liu H; Yang T; Dai J; Zhu J; Li X; Wen R; Yang X
    Analyst; 2015 Oct; 140(19):6652-9. PubMed ID: 26299437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of TiO
    Zhu B; Zhou Q; Zhen D; Wang Y; Cai Q; Chen P
    Talanta; 2019 Mar; 194():870-875. PubMed ID: 30609618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.
    Yao J; Sun N; Deng C; Zhang X
    Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile preparation of monolithic immobilized metal affinity chromatography capillary columns for selective enrichment of phosphopeptides.
    Zhang L; Wang H; Liang Z; Yang K; Zhang L; Zhang Y
    J Sep Sci; 2011 Aug; 34(16-17):2122-30. PubMed ID: 21598383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of phosphopeptides using zirconium-chlorophosphonazo chelate-modified silica nanoparticles.
    Zhao PX; Zhao Y; Guo XF; Wang H; Zhang HS
    J Chromatogr A; 2011 May; 1218(18):2528-39. PubMed ID: 21444088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new Ti-based IMAC nanohybrid with high hydrophilicity and enhanced absorption capacity for the selective enrichment of phosphopeptides.
    Wang X; Yu J; Yang H; Shen J; Liu H; Zhou J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1179():122851. PubMed ID: 34246169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides.
    He XM; Chen X; Zhu GT; Wang Q; Yuan BF; Feng YQ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17356-62. PubMed ID: 26207954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel molybdenum disulfide nanosheet loaded Titanium/Zirconium bimetal oxide affinity probe for efficient enrichment of phosphopeptides in A549 cells.
    Ma ZQ; Wang YH; Peng Y; Guo X; Meng Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 May; 1199():123235. PubMed ID: 35447520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amine-functionalized TiO₂ nanoparticles for highly selective enrichment of phosphopeptides.
    Liu H; Zhou J; Huang H
    Talanta; 2015 Oct; 143():431-437. PubMed ID: 26078180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis.
    Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of amphiphile 4-armed PEO-based Ti
    Huang YL; Wang J; Jiang YH; Yang PY; Wang GW; Liu F
    Talanta; 2019 Nov; 204():670-676. PubMed ID: 31357351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Gd
    Jiang D; Li X; Ma J; Jia Q
    Talanta; 2018 Apr; 180():368-375. PubMed ID: 29332825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-functionalized magnetic microspheres for immobilization of Zr(4+) ions for selective enrichment of the phosphopeptides.
    Qi D; Mao Y; Lu J; Deng C; Zhang X
    J Chromatogr A; 2010 Apr; 1217(16):2606-17. PubMed ID: 19942223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.
    Shi C; Lin Q; Deng C
    Talanta; 2015 Apr; 135():81-6. PubMed ID: 25640129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry.
    Aryal UK; Ross AR
    Rapid Commun Mass Spectrom; 2010 Jan; 24(2):219-31. PubMed ID: 20014058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridoxal 5'-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides.
    Wang Q; He XM; Chen X; Zhu GT; Wang RQ; Feng YQ
    J Chromatogr A; 2017 May; 1499():30-37. PubMed ID: 28390667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides.
    Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides.
    Yu Z; Han G; Sun S; Jiang X; Chen R; Wang F; Wu R; Ye M; Zou H
    Anal Chim Acta; 2009 Mar; 636(1):34-41. PubMed ID: 19231353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.