These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28107943)
81. A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Meneely JP; Sulyok M; Baumgartner S; Krska R; Elliott CT Talanta; 2010 Apr; 81(1-2):630-6. PubMed ID: 20188974 [TBL] [Abstract][Full Text] [Related]
82. Dual near-infrared fluorescence-based lateral flow immunosensor for the detection of zearalenone and deoxynivalenol in maize. Jin Y; Chen Q; Luo S; He L; Fan R; Zhang S; Yang C; Chen Y Food Chem; 2021 Jan; 336():127718. PubMed ID: 32763741 [TBL] [Abstract][Full Text] [Related]
83. Generation of antibodies reactive with fumonisins B1, B2, and B3 by using cholera toxin as the carrier-adjuvant. Azcona-Olivera JI; Abouzied MM; Plattner RD; Norred WP; Pestka JJ Appl Environ Microbiol; 1992 Jan; 58(1):169-73. PubMed ID: 1539971 [TBL] [Abstract][Full Text] [Related]
84. Molecular diagnostics on the toxigenic potential of Fusarium spp. plant pathogens. Dawidziuk A; Koczyk G; Popiel D; Kaczmarek J; Buśko M J Appl Microbiol; 2014 Jun; 116(6):1607-20. PubMed ID: 24575830 [TBL] [Abstract][Full Text] [Related]
85. Development and evaluation of multiplex PCR for detection of T-2 and zearalenone producing Fusarium spp. Neera ; Murali HS Lett Appl Microbiol; 2021 Sep; 73(3):363-371. PubMed ID: 34101222 [TBL] [Abstract][Full Text] [Related]
86. Development of a novel homogeneous immunoassay using the engineered luminescent enzyme NanoLuc for the quantification of the mycotoxin fumonisin B1. Alsulami T; Nath N; Flemming R; Wang H; Zhou W; Yu JH Biosens Bioelectron; 2021 Apr; 177():112939. PubMed ID: 33440308 [TBL] [Abstract][Full Text] [Related]
87. Identification of fumonisin B2, HT-2 toxin, patulin, and zearalenone in dried figs by liquid chromatography-time-of-flight mass spectrometry and liquid chromatography-mass spectrometry. Senyuva HZ; Gilbert J J Food Prot; 2008 Jul; 71(7):1500-4. PubMed ID: 18680955 [TBL] [Abstract][Full Text] [Related]
88. CLICK-FLISA Based on Metal-Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. Zhang J; Zhu B; Zhang X; Peng Y; Li S; Han D; Ren S; Qin K; Wang Y; Zhou H; Gao Z Biosensors (Basel); 2024 Jul; 14(7):. PubMed ID: 39056631 [TBL] [Abstract][Full Text] [Related]
89. Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. Tran TV; Do BN; Nguyen TPT; Tran TT; Tran SC; Nguyen BV; Nguyen CV; Le HQ F1000Res; 2019; 8():1042. PubMed ID: 31956398 [TBL] [Abstract][Full Text] [Related]
90. Multiplexed mycotoxins determination employing white light reflectance spectroscopy and silicon chips with silicon oxide areas of different thickness. Anastasiadis V; Koukouvinos G; Petrou PS; Economou A; Dekker J; Harjanne M; Heimala P; Goustouridis D; Raptis I; Kakabakos SE Biosens Bioelectron; 2020 Apr; 153():112035. PubMed ID: 31989941 [TBL] [Abstract][Full Text] [Related]
91. Visual Non-Instrumental On-Site Detection of Fumonisin B₁, B₂, and B₃ in Cereal Samples Using a Clean-Up Combined with Gel-Based Immunoaffinity Test Column Assay. Sheng W; Wu H; Ji W; Li Z; Chu F; Wang S Toxins (Basel); 2018 Apr; 10(4):. PubMed ID: 29671825 [TBL] [Abstract][Full Text] [Related]
93. Sensitive detection of estrogenic mycotoxin zearalenone by open sandwich immunoassay. Suzuki T; Munakata Y; Morita K; Shinoda T; Ueda H Anal Sci; 2007 Jan; 23(1):65-70. PubMed ID: 17213626 [TBL] [Abstract][Full Text] [Related]
94. Monoclonal antibody-based enzyme-linked immunosorbent assay of Fusarium T-2 and zearalenone toxins in cereals. Barna-Vetró I; Gyöngyösi A; Solti L Appl Environ Microbiol; 1994 Feb; 60(2):729-31. PubMed ID: 8135523 [TBL] [Abstract][Full Text] [Related]
95. A highly sensitive immunofluorescence sensor based on bicolor upconversion and magnetic separation for simultaneous detection of fumonisin B1 and zearalenone. Li J; Zhao X; Wang Y; Li S; Qin Y; Han T; Gao Z; Liu H Analyst; 2021 May; 146(10):3328-3335. PubMed ID: 33999047 [TBL] [Abstract][Full Text] [Related]
96. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Peltomaa R; Farka Z; Mickert MJ; Brandmeier JC; Pastucha M; Hlaváček A; Martínez-Orts M; Canales Á; Skládal P; Benito-Peña E; Moreno-Bondi MC; Gorris HH Biosens Bioelectron; 2020 Dec; 170():112683. PubMed ID: 33069054 [TBL] [Abstract][Full Text] [Related]
97. Development of a multiplex flow cytometric microsphere immunoassay for mycotoxins and evaluation of its application in feed. Peters J; Bienenmann-Ploum M; de Rijk T; Haasnoot W Mycotoxin Res; 2011 Feb; 27(1):63-72. PubMed ID: 21836765 [TBL] [Abstract][Full Text] [Related]
98. A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Ostry V; Ovesna J; Skarkova J; Pouchova V; Ruprich J Mycotoxin Res; 2010 Aug; 26(3):141-5. PubMed ID: 23605378 [TBL] [Abstract][Full Text] [Related]
99. Analysis of fumonisin mycotoxins with capillary electrophoresis - mass spectrometry. Kecskeméti Á; Nagy C; Biró P; Szabó Z; Pócsi I; Bartók T; Gáspár A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Sep; 37(9):1553-1563. PubMed ID: 32692287 [TBL] [Abstract][Full Text] [Related]
100. Development and comparison of mimotope-based immunoassays for the analysis of fumonisin B Peltomaa R; Agudo-Maestro I; Más V; Barderas R; Benito-Peña E; Moreno-Bondi MC Anal Bioanal Chem; 2019 Oct; 411(26):6801-6811. PubMed ID: 31422432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]