BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28108309)

  • 1. Hypoxia enhances the viability, growth and chondrogenic potential of cryopreserved human adipose-derived stem cells.
    Wan Safwani WKZ; Choi JR; Yong KW; Ting I; Mat Adenan NA; Pingguan-Murphy B
    Cryobiology; 2017 Apr; 75():91-99. PubMed ID: 28108309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells.
    Choi JR; Pingguan-Murphy B; Wan Abas WA; Noor Azmi MA; Omar SZ; Chua KH; Wan Safwani WK
    Biochem Biophys Res Commun; 2014 May; 448(2):218-24. PubMed ID: 24785372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells.
    Liu G; Zhou H; Li Y; Li G; Cui L; Liu W; Cao Y
    Cryobiology; 2008 Aug; 57(1):18-24. PubMed ID: 18495102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia Enhances Proliferation of Human Adipose-Derived Stem Cells via HIF-1ɑ Activation.
    Kakudo N; Morimoto N; Ogawa T; Taketani S; Kusumoto K
    PLoS One; 2015; 10(10):e0139890. PubMed ID: 26465938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells.
    Yong KW; Pingguan-Murphy B; Xu F; Abas WA; Choi JR; Omar SZ; Azmi MA; Chua KH; Wan Safwani WK
    Sci Rep; 2015 Apr; 5():9596. PubMed ID: 25872464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adipogenic differentiation of human adipose tissue-derived stem cells obtained from cryopreserved adipose aspirates.
    Lee JE; Kim I; Kim M
    Dermatol Surg; 2010 Jul; 36(7):1078-83. PubMed ID: 20653721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia enhances the therapeutic potential of superparamagnetic iron oxide-labeled adipose-derived stem cells for myocardial infarction.
    Wang J; Xiang B; Deng JX; Lin HY; Freed DH; Arora RC; Tian GH
    J Huazhong Univ Sci Technolog Med Sci; 2017 Aug; 37(4):516-522. PubMed ID: 28786062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryopreservation of heat-shocked canine adipose-derived mesenchymal stromal cells with 10% dimethyl sulfoxide and 40% serum results in better viability, proliferation, anti-oxidation, and in-vitro differentiation.
    Shahid MA; Kim WH; Kweon OK
    Cryobiology; 2020 Feb; 92():92-102. PubMed ID: 31785238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells.
    Wang C; Xiao R; Cao YL; Yin HY
    Biochem Biophys Res Commun; 2017 Sep; 491(1):198-203. PubMed ID: 28712869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryopreservation of whole adipose tissue for future use in regenerative medicine.
    Choudhery MS; Badowski M; Muise A; Pierce J; Harris DT
    J Surg Res; 2014 Mar; 187(1):24-35. PubMed ID: 24268882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic Conditioned Medium From Human Adipose-Derived Stem Cells Promotes Mouse Liver Regeneration Through JAK/STAT3 Signaling.
    Lee SC; Jeong HJ; Lee SK; Kim SJ
    Stem Cells Transl Med; 2016 Jun; 5(6):816-25. PubMed ID: 27102647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular and molecular stimulation of adipose-derived stem cells under hypoxia.
    Kang S; Kim SM; Sung JH
    Cell Biol Int; 2014 May; 38(5):553-62. PubMed ID: 24446066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreserved human adipogenic-differentiated pre-adipocytes: a potential new source for adipose tissue regeneration.
    Kim M; Kim I; Kim SH; Jung M; Han S; Lee J; Nam JS; Lee SK; Bang S
    Cytotherapy; 2007; 9(5):468-76. PubMed ID: 17786608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells.
    Deng Y; Huang G; Chen F; Testroet ED; Li H; Li H; Nong T; Yang X; Cui J; Shi D; Yang S
    J Cell Physiol; 2019 Aug; 234(10):17254-17268. PubMed ID: 30805934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability.
    Goh BC; Thirumala S; Kilroy G; Devireddy RV; Gimble JM
    J Tissue Eng Regen Med; 2007; 1(4):322-4. PubMed ID: 18038424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology.
    De Rosa A; De Francesco F; Tirino V; Ferraro GA; Desiderio V; Paino F; Pirozzi G; D'Andrea F; Papaccio G
    Tissue Eng Part C Methods; 2009 Dec; 15(4):659-67. PubMed ID: 19254116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis.
    Choi JR; Pingguan-Murphy B; Wan Abas WA; Yong KW; Poon CT; Noor Azmi MA; Omar SZ; Chua KH; Xu F; Wan Safwani WK
    PLoS One; 2015; 10(1):e0115034. PubMed ID: 25615717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engraftment of hypoxic-preconditioned adipose-derived stem cells improves flap viability.
    Hollenbeck ST; Senghaas A; Komatsu I; Zhang Y; Erdmann D; Klitzman B
    Wound Repair Regen; 2012; 20(6):872-8. PubMed ID: 23110692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation.
    Gonda K; Shigeura T; Sato T; Matsumoto D; Suga H; Inoue K; Aoi N; Kato H; Sato K; Murase S; Koshima I; Yoshimura K
    Plast Reconstr Surg; 2008 Feb; 121(2):401-410. PubMed ID: 18300956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically Defined, Clinical-Grade Cryopreservation of Human Adipose Stem Cells.
    López M; Eroglu A
    Methods Mol Biol; 2021; 2180():555-567. PubMed ID: 32797434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.