BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28108311)

  • 1. RIP1 and RIP3 contribute to shikonin-induced DNA double-strand breaks in glioma cells via increase of intracellular reactive oxygen species.
    Zhou Z; Lu B; Wang C; Wang Z; Luo T; Piao M; Meng F; Chi G; Luo Y; Ge P
    Cancer Lett; 2017 Apr; 390():77-90. PubMed ID: 28108311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation.
    Lu B; Gong X; Wang ZQ; Ding Y; Wang C; Luo TF; Piao MH; Meng FK; Chi GF; Luo YN; Ge PF
    Acta Pharmacol Sin; 2017 Nov; 38(11):1543-1553. PubMed ID: 28816233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide.
    Lu B; Wang Z; Ding Y; Wang X; Lu S; Wang C; He C; Piao M; Chi G; Luo Y; Ge P
    Cancer Lett; 2018 Jul; 425():31-42. PubMed ID: 29608987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells.
    Sun W; Wu X; Gao H; Yu J; Zhao W; Lu JJ; Wang J; Du G; Chen X
    Free Radic Biol Med; 2017 Jul; 108():433-444. PubMed ID: 28414098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MLKL contributes to shikonin-induced glioma cell necroptosis via promotion of chromatinolysis.
    Ding Y; He C; Lu S; Wang X; Wang C; Wang L; Zhang J; Piao M; Chi G; Luo Y; Sai K; Ge P
    Cancer Lett; 2019 Dec; 467():58-71. PubMed ID: 31560934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway.
    Zhou J; Li G; Han G; Feng S; Liu Y; Chen J; Liu C; Zhao L; Jin F
    Invest New Drugs; 2020 Feb; 38(1):50-59. PubMed ID: 30924024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis.
    Fu Z; Deng B; Liao Y; Shan L; Yin F; Wang Z; Zeng H; Zuo D; Hua Y; Cai Z
    BMC Cancer; 2013 Dec; 13():580. PubMed ID: 24314238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RIP1, RIP3, and MLKL Contribute to Cell Death Caused by Clostridium perfringens Enterotoxin.
    Shrestha A; Mehdizadeh Gohari I; McClane BA
    mBio; 2019 Dec; 10(6):. PubMed ID: 31848291
    [No Abstract]   [Full Text] [Related]  

  • 9. Cyclophilin A contributes to shikonin-induced glioma cell necroptosis and promotion of chromatinolysis.
    Wang X; Fan L; Wang X; Luo T; Liu L
    Sci Rep; 2022 Aug; 12(1):14675. PubMed ID: 36038617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis.
    Vandenabeele P; Declercq W; Van Herreweghe F; Vanden Berghe T
    Sci Signal; 2010 Mar; 3(115):re4. PubMed ID: 20354226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination.
    de Almagro MC; Goncharov T; Newton K; Vucic D
    Cell Death Dis; 2015 Jun; 6(6):e1800. PubMed ID: 26111062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death.
    Schenk B; Fulda S
    Oncogene; 2015 Nov; 34(47):5796-806. PubMed ID: 25867066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis.
    Feng Y; Wang W; Zhang Y; Fu X; Ping K; Zhao J; Lei Y; Mou Y; Wang S
    Eur J Med Chem; 2022 Feb; 229():114070. PubMed ID: 34968902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shikonin kills glioma cells through necroptosis mediated by RIP-1.
    Huang C; Luo Y; Zhao J; Yang F; Zhao H; Fan W; Ge P
    PLoS One; 2013; 8(6):e66326. PubMed ID: 23840441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Necrostatin-1 Protects Against Paraquat-Induced Cardiac Contractile Dysfunction via RIP1-RIP3-MLKL-Dependent Necroptosis Pathway.
    Zhang L; Feng Q; Wang T
    Cardiovasc Toxicol; 2018 Aug; 18(4):346-355. PubMed ID: 29299822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome.
    Zhang Y; Su SS; Zhao S; Yang Z; Zhong CQ; Chen X; Cai Q; Yang ZH; Huang D; Wu R; Han J
    Nat Commun; 2017 Feb; 8():14329. PubMed ID: 28176780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive and negative phosphorylation regulates RIP1- and RIP3-induced programmed necrosis.
    McQuade T; Cho Y; Chan FK
    Biochem J; 2013 Dec; 456(3):409-15. PubMed ID: 24059293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review).
    Liu Y; Liu T; Lei T; Zhang D; Du S; Girani L; Qi D; Lin C; Tong R; Wang Y
    Int J Mol Med; 2019 Sep; 44(3):771-786. PubMed ID: 31198981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bufalin inhibits human breast cancer tumorigenesis by inducing cell death through the ROS-mediated RIP1/RIP3/PARP-1 pathways.
    Li Y; Tian X; Liu X; Gong P
    Carcinogenesis; 2018 May; 39(5):700-707. PubMed ID: 29546393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracts derived from a traditional Chinese herbal formula triggers necroptosis in ectocervical Ect1/E6E7 cells through activation of RIP1 kinase.
    Chen X; Hu X; Liu L; Liang X; Xiao J
    J Ethnopharmacol; 2019 Jul; 239():111922. PubMed ID: 31034957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.